smartscraper / train.py
DDDano333's picture
new config
85b01ed
import os
import torch
import torch.nn as nn
from datasets import load_dataset
import transformers
from transformers import AutoTokenizer, AutoConfig, LLaMAForCausalLM, LLaMATokenizer
from peft import prepare_model_for_int8_training, LoraConfig, get_peft_model
from accelerate import Accelerator
from torch.utils.data import DataLoader
def train():
MICRO_BATCH_SIZE = 1
BATCH_SIZE = 16
GRADIENT_ACCUMULATION_STEPS = BATCH_SIZE // MICRO_BATCH_SIZE
EPOCHS = 2
LEARNING_RATE = 2e-10
LORA_R = 4
LORA_ALPHA = 8
LORA_DROPOUT = 0.05
accelerator = Accelerator()
model = LLaMAForCausalLM.from_pretrained(
"decapoda-research/llama-7b-hf"
)
tokenizer = LLaMATokenizer.from_pretrained(
"decapoda-research/llama-7b-hf", add_eos_token=True
)
model = prepare_model_for_int8_training(model)
config = LoraConfig(
r=LORA_R,
lora_alpha=LORA_ALPHA,
target_modules=["q_proj", "v_proj"],
lora_dropout=LORA_DROPOUT,
bias="none",
task_type="CAUSAL_LM",
)
model = get_peft_model(model, config)
tokenizer.pad_token_id = 0
data = load_dataset("json", data_files="samples.json")
def generate_prompt(data_point):
if data_point["input"]:
prompt = f"""### Instruction:
{data_point["instruction"]}
### Input:
{data_point["input"]}
### Response:
{data_point["output"]}"""
else:
prompt = f"""### Instruction:
{data_point["instruction"]}
### Response:
{data_point["output"]}"""
input_tokens = tokenizer(prompt, truncation=False, padding='longest', return_tensors='pt')
output_tokens = tokenizer(data_point["output"], truncation=False, padding='longest', return_tensors='pt')
return input_tokens, output_tokens["input_ids"].squeeze()
data = data.shuffle().map(generate_prompt)
optimizer = torch.optim.AdamW(model.parameters(), lr=LEARNING_RATE)
model, optimizer = accelerator.prepare(model, optimizer)
train_dataloader = DataLoader(data["train"], batch_size=MICRO_BATCH_SIZE, shuffle=True)
train_dataloader = accelerator.prepare(train_dataloader)
for epoch in range(EPOCHS):
for step, batch in enumerate(train_dataloader):
inputs, labels = batch
inputs_tensor = torch.tensor(inputs["input_ids"], dtype=torch.long).unsqueeze(0).to(accelerator.device)
outputs = model(inputs_tensor)
labels_tensor = torch.tensor(labels, dtype=torch.long).to(accelerator.device)
loss = nn.CrossEntropyLoss()(outputs.logits.view(-1, outputs.logits.size(-1)), labels_tensor.view(-1))
accelerator.backward(loss)
optimizer.step()
optimizer.zero_grad()
model.save_pretrained(f"lora-smartscraper-{accelerator.process_index}")
if __name__ == "__main__":
train()