|
|
"""CADE 2.5: refined adaptive enhancer with reference clean and accumulation override. |
|
|
|
|
|
Builds on the CADE2 Beta: single clean iteration loop, optional latent-based |
|
|
parameter damping, CLIP-based reference clean, and per-run SageAttention |
|
|
accumulation override. |
|
|
""" |
|
|
|
|
|
from __future__ import annotations |
|
|
|
|
|
import torch |
|
|
import os |
|
|
import numpy as np |
|
|
import torch.nn.functional as F |
|
|
|
|
|
import nodes |
|
|
import comfy.model_management as model_management |
|
|
|
|
|
from .mg_adaptive import AdaptiveSamplerHelper |
|
|
from .mg_zesmart_sampler_v1_1 import _build_hybrid_sigmas |
|
|
import comfy.sample as _sample |
|
|
import comfy.samplers as _samplers |
|
|
import comfy.utils as _utils |
|
|
from .mg_upscale_module import MagicUpscaleModule, clear_gpu_and_ram_cache |
|
|
from .mg_controlfusion import _build_depth_map as _cf_build_depth_map |
|
|
from .mg_ids import IntelligentDetailStabilizer |
|
|
from .. import mg_sagpu_attention as sa_patch |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
_CLIPSEG_MODEL = None |
|
|
_CLIPSEG_PROC = None |
|
|
_CLIPSEG_DEV = "cpu" |
|
|
_CLIPSEG_FORCE_CPU = True |
|
|
|
|
|
|
|
|
_MG_CANCEL_REQUESTED = False |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
CURRENT_ONNX_MASK_BCHW = None |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _try_init_clipseg(): |
|
|
"""Lazy-load CLIPSeg processor + model and choose device. |
|
|
Returns True on success. |
|
|
""" |
|
|
global _CLIPSEG_MODEL, _CLIPSEG_PROC, _CLIPSEG_DEV |
|
|
if (_CLIPSEG_MODEL is not None) and (_CLIPSEG_PROC is not None): |
|
|
return True |
|
|
try: |
|
|
from transformers import CLIPSegProcessor, CLIPSegForImageSegmentation |
|
|
except Exception: |
|
|
if not globals().get("_CLIPSEG_WARNED", False): |
|
|
print("[CADE2.5][CLIPSeg] transformers not available; CLIPSeg disabled.") |
|
|
globals()["_CLIPSEG_WARNED"] = True |
|
|
return False |
|
|
try: |
|
|
_CLIPSEG_PROC = CLIPSegProcessor.from_pretrained("CIDAS/clipseg-rd64-refined") |
|
|
_CLIPSEG_MODEL = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined") |
|
|
if _CLIPSEG_FORCE_CPU: |
|
|
_CLIPSEG_DEV = "cpu" |
|
|
else: |
|
|
_CLIPSEG_DEV = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
_CLIPSEG_MODEL = _CLIPSEG_MODEL.to(_CLIPSEG_DEV) |
|
|
_CLIPSEG_MODEL.eval() |
|
|
return True |
|
|
except Exception as e: |
|
|
print(f"[CADE2.5][CLIPSeg] failed to load model: {e}") |
|
|
return False |
|
|
|
|
|
|
|
|
def _clipseg_build_mask(image_bhwc: torch.Tensor, |
|
|
text: str, |
|
|
preview: int = 224, |
|
|
threshold: float = 0.4, |
|
|
blur: float = 7.0, |
|
|
dilate: int = 4, |
|
|
gain: float = 1.0, |
|
|
ref_embed: torch.Tensor | None = None, |
|
|
clip_vision=None, |
|
|
ref_threshold: float = 0.03) -> torch.Tensor | None: |
|
|
"""Return BHWC single-channel mask [0,1] from CLIPSeg. |
|
|
- Uses cached CLIPSeg model; gracefully returns None on failure. |
|
|
- Applies optional threshold/blur/dilate and scaling gain. |
|
|
- If clip_vision + ref_embed provided, gates mask by CLIP-Vision distance. |
|
|
""" |
|
|
if not text or not isinstance(text, str): |
|
|
return None |
|
|
if not _try_init_clipseg(): |
|
|
return None |
|
|
try: |
|
|
|
|
|
target = int(max(16, min(1024, preview))) |
|
|
img = image_bhwc.detach().to('cpu') |
|
|
if img.ndim == 5: |
|
|
|
|
|
if img.shape[1] == 1: |
|
|
img = img[:, 0] |
|
|
else: |
|
|
img = img[:, 0] |
|
|
B, H, W, C = img.shape |
|
|
x = img[0].movedim(-1, 0).unsqueeze(0) |
|
|
x = F.interpolate(x, size=(target, target), mode='bilinear', align_corners=False) |
|
|
x = x.clamp(0, 1) |
|
|
arr = (x[0].movedim(0, -1).numpy() * 255.0).astype('uint8') |
|
|
from PIL import Image |
|
|
pil_img = Image.fromarray(arr) |
|
|
|
|
|
|
|
|
import re |
|
|
prompts = [t.strip() for t in re.split(r"[\|,;\n]+", text) if t.strip()] |
|
|
if not prompts: |
|
|
prompts = [text.strip()] |
|
|
prompts = prompts[:8] |
|
|
inputs = _CLIPSEG_PROC(text=prompts, images=[pil_img] * len(prompts), return_tensors="pt") |
|
|
inputs = {k: v.to(_CLIPSEG_DEV) for k, v in inputs.items()} |
|
|
with torch.inference_mode(): |
|
|
outputs = _CLIPSEG_MODEL(**inputs) |
|
|
|
|
|
logits = outputs.logits |
|
|
if logits.ndim == 2: |
|
|
logits = logits.unsqueeze(0) |
|
|
prob = torch.sigmoid(logits) |
|
|
|
|
|
prob = 1.0 - torch.prod(1.0 - prob.clamp(0, 1), dim=0, keepdim=True) |
|
|
prob = prob.unsqueeze(1) |
|
|
|
|
|
prob = F.interpolate(prob, size=(H, W), mode='bilinear', align_corners=False) |
|
|
m = prob[0, 0].to(dtype=image_bhwc.dtype, device=image_bhwc.device) |
|
|
|
|
|
if threshold > 0.0: |
|
|
m = torch.where(m > float(threshold), m, torch.zeros_like(m)) |
|
|
|
|
|
if blur > 0.0: |
|
|
rad = int(max(1, min(7, round(blur)))) |
|
|
m = _gaussian_blur_nchw(m.unsqueeze(0).unsqueeze(0), sigma=float(max(0.5, blur)), radius=rad)[0, 0] |
|
|
|
|
|
if int(dilate) > 0: |
|
|
k = int(dilate) * 2 + 1 |
|
|
p = int(dilate) |
|
|
m = F.max_pool2d(m.unsqueeze(0).unsqueeze(0), kernel_size=k, stride=1, padding=p)[0, 0] |
|
|
|
|
|
if (clip_vision is not None) and (ref_embed is not None): |
|
|
try: |
|
|
cur = _encode_clip_image(image_bhwc, clip_vision, target_res=224) |
|
|
dist = _clip_cosine_distance(cur, ref_embed) |
|
|
if dist > float(ref_threshold): |
|
|
|
|
|
gate = 1.0 + min(0.5, (dist - float(ref_threshold)) * 4.0) |
|
|
m = m * gate |
|
|
except Exception: |
|
|
pass |
|
|
m = (m * float(max(0.0, gain))).clamp(0, 1) |
|
|
out_mask = m.unsqueeze(0).unsqueeze(-1) |
|
|
|
|
|
try: |
|
|
del inputs |
|
|
except Exception: |
|
|
pass |
|
|
try: |
|
|
del outputs |
|
|
except Exception: |
|
|
pass |
|
|
try: |
|
|
del logits |
|
|
except Exception: |
|
|
pass |
|
|
try: |
|
|
del prob |
|
|
except Exception: |
|
|
pass |
|
|
try: |
|
|
del pil_img |
|
|
except Exception: |
|
|
pass |
|
|
try: |
|
|
del arr |
|
|
except Exception: |
|
|
pass |
|
|
try: |
|
|
del x |
|
|
except Exception: |
|
|
pass |
|
|
try: |
|
|
del img |
|
|
except Exception: |
|
|
pass |
|
|
return out_mask |
|
|
except Exception as e: |
|
|
if not globals().get("_CLIPSEG_WARNED", False): |
|
|
print(f"[CADE2.5][CLIPSeg] mask failed: {e}") |
|
|
globals()["_CLIPSEG_WARNED"] = True |
|
|
return None |
|
|
|
|
|
|
|
|
def _np_to_mask_tensor(np_map: np.ndarray, out_h: int, out_w: int, device, dtype): |
|
|
"""Convert numpy heatmap [H,W] or [1,H,W] or [H,W,1] to BHWC torch mask with B=1 and resize to out_h,out_w.""" |
|
|
if np_map.ndim == 3: |
|
|
np_map = np_map.reshape(np_map.shape[-2], np_map.shape[-1]) if (np_map.shape[0] == 1) else np_map.squeeze() |
|
|
if np_map.ndim != 2: |
|
|
return None |
|
|
t = torch.from_numpy(np_map.astype(np.float32)) |
|
|
t = t.clamp_min(0.0) |
|
|
t = t.unsqueeze(0).unsqueeze(0) |
|
|
t = F.interpolate(t, size=(out_h, out_w), mode="bilinear", align_corners=False) |
|
|
t = t.permute(0, 2, 3, 1).to(device=device, dtype=dtype) |
|
|
return t.clamp(0, 1) |
|
|
|
|
|
|
|
|
def _mask_to_like(mask_bhw1: torch.Tensor, like_bhwc: torch.Tensor) -> torch.Tensor: |
|
|
try: |
|
|
if mask_bhw1 is None or like_bhwc is None: |
|
|
return mask_bhw1 |
|
|
if mask_bhw1.ndim != 4 or like_bhwc.ndim != 4: |
|
|
return mask_bhw1 |
|
|
_, Ht, Wt, _ = like_bhwc.shape |
|
|
_, Hm, Wm, _ = mask_bhw1.shape |
|
|
if (Hm, Wm) == (Ht, Wt): |
|
|
return mask_bhw1 |
|
|
m = mask_bhw1.movedim(-1, 1) |
|
|
m = F.interpolate(m, size=(Ht, Wt), mode='bilinear', align_corners=False) |
|
|
return m.movedim(1, -1).clamp(0, 1) |
|
|
except Exception: |
|
|
return mask_bhw1 |
|
|
|
|
|
|
|
|
def _align_mask_pair(a_bhw1: torch.Tensor, b_bhw1: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]: |
|
|
try: |
|
|
if a_bhw1 is None or b_bhw1 is None: |
|
|
return a_bhw1, b_bhw1 |
|
|
if a_bhw1.ndim != 4 or b_bhw1.ndim != 4: |
|
|
return a_bhw1, b_bhw1 |
|
|
_, Ha, Wa, _ = a_bhw1.shape |
|
|
_, Hb, Wb, _ = b_bhw1.shape |
|
|
if (Ha, Wa) == (Hb, Wb): |
|
|
return a_bhw1, b_bhw1 |
|
|
m = b_bhw1.movedim(-1, 1) |
|
|
m = F.interpolate(m, size=(Ha, Wa), mode='bilinear', align_corners=False) |
|
|
return a_bhw1, m.movedim(1, -1).clamp(0, 1) |
|
|
except Exception: |
|
|
return a_bhw1, b_bhw1 |
|
|
|
|
|
|
|
|
|
|
|
def _median_pool3x3_bhwc(img_bhwc: torch.Tensor) -> torch.Tensor: |
|
|
B, H, W, C = img_bhwc.shape |
|
|
x = img_bhwc.permute(0, 3, 1, 2) |
|
|
unfold = F.unfold(x, kernel_size=3, padding=1) |
|
|
unfold = unfold.view(B, x.shape[1], 9, H, W) |
|
|
med, _ = torch.median(unfold, dim=2) |
|
|
return med.permute(0, 2, 3, 1) |
|
|
|
|
|
|
|
|
def _despeckle_fireflies(img_bhwc: torch.Tensor, |
|
|
thr: float = 0.985, |
|
|
max_iso: float | None = None, |
|
|
grad_gate: float = 0.25) -> torch.Tensor: |
|
|
try: |
|
|
dev, dt = img_bhwc.device, img_bhwc.dtype |
|
|
B, H, W, C = img_bhwc.shape |
|
|
s = max(H, W) / 1024.0 |
|
|
k = 3 if s <= 1.1 else (5 if s <= 2.0 else 7) |
|
|
pad = k // 2 |
|
|
lum = (0.2126 * img_bhwc[..., 0] + 0.7152 * img_bhwc[..., 1] + 0.0722 * img_bhwc[..., 2]).to(device=dev, dtype=dt) |
|
|
try: |
|
|
q = float(torch.quantile(lum.reshape(-1), 0.9995).item()) |
|
|
thr_eff = max(float(thr), min(0.997, q)) |
|
|
except Exception: |
|
|
thr_eff = float(thr) |
|
|
|
|
|
R, G, Bc = img_bhwc[..., 0], img_bhwc[..., 1], img_bhwc[..., 2] |
|
|
V = torch.maximum(R, torch.maximum(G, Bc)) |
|
|
mi = torch.minimum(R, torch.minimum(G, Bc)) |
|
|
S = 1.0 - (mi / (V + 1e-6)) |
|
|
v_thr = max(0.985, thr_eff) |
|
|
s_thr = 0.06 |
|
|
cand = (V > v_thr) & (S < s_thr) |
|
|
|
|
|
kx = torch.tensor([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]], device=dev, dtype=dt).view(1, 1, 3, 3) |
|
|
ky = torch.tensor([[-1, -2, -1], [0, 0, 0], [1, 2, 1]], device=dev, dtype=dt).view(1, 1, 3, 3) |
|
|
gx = F.conv2d(lum.unsqueeze(1), kx, padding=1) |
|
|
gy = F.conv2d(lum.unsqueeze(1), ky, padding=1) |
|
|
grad = torch.sqrt(gx * gx + gy * gy).squeeze(1) |
|
|
safe_gate = float(grad_gate) * (k / 3.0) ** 0.5 |
|
|
cand = cand & (grad < safe_gate) |
|
|
if cand.any(): |
|
|
try: |
|
|
import cv2, numpy as _np |
|
|
masks = [] |
|
|
for b in range(cand.shape[0]): |
|
|
msk = cand[b].detach().to('cpu').numpy().astype('uint8') * 255 |
|
|
num, labels, stats, _ = cv2.connectedComponentsWithStats(msk, connectivity=8) |
|
|
rem = _np.zeros_like(msk, dtype='uint8') |
|
|
area_max = int(max(3, round((k * k) * 0.6))) |
|
|
for lbl in range(1, num): |
|
|
area = stats[lbl, cv2.CC_STAT_AREA] |
|
|
if area <= area_max: |
|
|
rem[labels == lbl] = 255 |
|
|
masks.append(torch.from_numpy(rem > 0)) |
|
|
rm = torch.stack(masks, dim=0).to(device=dev) |
|
|
rm = rm.unsqueeze(-1) |
|
|
if rm.any(): |
|
|
med = _median_pool3x3_bhwc(img_bhwc) |
|
|
return torch.where(rm, med, img_bhwc) |
|
|
except Exception: |
|
|
pass |
|
|
|
|
|
bright = (img_bhwc.min(dim=-1).values > v_thr) |
|
|
dens = F.avg_pool2d(bright.float().unsqueeze(1), k, 1, pad).squeeze(1) |
|
|
max_iso_eff = (2.0 / (k * k)) if (max_iso is None) else float(max_iso) |
|
|
iso = bright & (dens < max_iso_eff) & (grad < safe_gate) |
|
|
if not iso.any(): |
|
|
return img_bhwc |
|
|
med = _median_pool3x3_bhwc(img_bhwc) |
|
|
return torch.where(iso.unsqueeze(-1), med, img_bhwc) |
|
|
except Exception: |
|
|
return img_bhwc |
|
|
|
|
|
|
|
|
def _try_heatmap_from_outputs(outputs: list, preview_hw: tuple[int, int]): |
|
|
"""Return [H,W] heatmap from model outputs if possible. |
|
|
Supports: |
|
|
- Segmentation logits/probabilities (NCHW / NHWC) |
|
|
- Keypoints arrays -> gaussian disks on points |
|
|
- Bounding boxes -> soft rectangles |
|
|
""" |
|
|
if not outputs: |
|
|
return None |
|
|
|
|
|
Ht, Wt = int(preview_hw[0]), int(preview_hw[1]) |
|
|
|
|
|
def to_float(arr): |
|
|
if arr.dtype not in (np.float32, np.float64): |
|
|
try: |
|
|
arr = arr.astype(np.float32) |
|
|
except Exception: |
|
|
return None |
|
|
return arr |
|
|
|
|
|
def sigmoid(x): |
|
|
return 1.0 / (1.0 + np.exp(-x)) |
|
|
|
|
|
|
|
|
for out in outputs: |
|
|
try: |
|
|
arr = np.asarray(out) |
|
|
except Exception: |
|
|
continue |
|
|
arr = to_float(arr) |
|
|
if arr is None: |
|
|
continue |
|
|
if arr.ndim == 4: |
|
|
n, a, b, c = arr.shape |
|
|
if c <= 4 and a >= 8 and b >= 8: |
|
|
if c == 1: |
|
|
hm = sigmoid(arr[0, :, :, 0]) if np.max(np.abs(arr)) > 1.5 else arr[0, :, :, 0] |
|
|
else: |
|
|
ex = np.exp(arr[0] - np.max(arr[0], axis=-1, keepdims=True)) |
|
|
prob = ex / np.clip(ex.sum(axis=-1, keepdims=True), 1e-6, None) |
|
|
hm = 1.0 - prob[..., 0] if prob.shape[-1] > 1 else prob[..., 0] |
|
|
return hm.astype(np.float32) |
|
|
else: |
|
|
if a == 1: |
|
|
ch = arr[0, 0] |
|
|
hm = sigmoid(ch) if np.max(np.abs(ch)) > 1.5 else ch |
|
|
return hm.astype(np.float32) |
|
|
else: |
|
|
x = arr[0] |
|
|
x = x - np.max(x, axis=0, keepdims=True) |
|
|
ex = np.exp(x) |
|
|
prob = ex / np.clip(np.sum(ex, axis=0, keepdims=True), 1e-6, None) |
|
|
bg = prob[0] if prob.shape[0] > 1 else prob[0] |
|
|
hm = 1.0 - bg |
|
|
return hm.astype(np.float32) |
|
|
if arr.ndim == 3: |
|
|
if arr.shape[0] == 1 and arr.shape[1] >= 8 and arr.shape[2] >= 8: |
|
|
return arr[0].astype(np.float32) |
|
|
if arr.ndim == 2 and arr.shape[0] >= 8 and arr.shape[1] >= 8: |
|
|
return arr.astype(np.float32) |
|
|
|
|
|
|
|
|
heat = np.zeros((Ht, Wt), dtype=np.float32) |
|
|
|
|
|
def draw_gaussian(hm, cx, cy, sigma=2.5, amp=1.0): |
|
|
r = max(1, int(3 * sigma)) |
|
|
xs = np.arange(-r, r + 1, dtype=np.float32) |
|
|
ys = np.arange(-r, r + 1, dtype=np.float32) |
|
|
gx = np.exp(-(xs**2) / (2 * sigma * sigma)) |
|
|
gy = np.exp(-(ys**2) / (2 * sigma * sigma)) |
|
|
g = np.outer(gy, gx) * float(amp) |
|
|
x0 = int(round(cx)) - r |
|
|
y0 = int(round(cy)) - r |
|
|
x1 = x0 + g.shape[1] |
|
|
y1 = y0 + g.shape[0] |
|
|
if x1 < 0 or y1 < 0 or x0 >= Wt or y0 >= Ht: |
|
|
return |
|
|
xs0 = max(0, x0) |
|
|
ys0 = max(0, y0) |
|
|
xs1 = min(Wt, x1) |
|
|
ys1 = min(Ht, y1) |
|
|
gx0 = xs0 - x0 |
|
|
gy0 = ys0 - y0 |
|
|
gx1 = gx0 + (xs1 - xs0) |
|
|
gy1 = gy0 + (ys1 - ys0) |
|
|
hm[ys0:ys1, xs0:xs1] = np.maximum(hm[ys0:ys1, xs0:xs1], g[gy0:gy1, gx0:gx1]) |
|
|
|
|
|
def draw_soft_rect(hm, x0, y0, x1, y1, edge=3.0): |
|
|
x0, y0, x1, y1 = int(x0), int(y0), int(x1), int(y1) |
|
|
if x1 <= 0 or y1 <= 0 or x0 >= Wt or y0 >= Ht: |
|
|
return |
|
|
xs0 = max(0, min(x0, x1)) |
|
|
ys0 = max(0, min(y0, y1)) |
|
|
xs1 = min(Wt, max(x0, x1)) |
|
|
ys1 = min(Ht, max(y0, y1)) |
|
|
if xs1 - xs0 <= 0 or ys1 - ys0 <= 0: |
|
|
return |
|
|
hm[ys0:ys1, xs0:xs1] = np.maximum(hm[ys0:ys1, xs0:xs1], 1.0) |
|
|
|
|
|
if edge > 0: |
|
|
rad = int(edge) |
|
|
if rad > 0: |
|
|
|
|
|
line = np.linspace(0, 1, rad + 1, dtype=np.float32)[1:] |
|
|
for d in range(1, rad + 1): |
|
|
w = line[d - 1] |
|
|
if ys0 - d >= 0: |
|
|
hm[ys0 - d:ys0, xs0:xs1] = np.maximum(hm[ys0 - d:ys0, xs0:xs1], w) |
|
|
if ys1 + d <= Ht: |
|
|
hm[ys1:ys1 + d, xs0:xs1] = np.maximum(hm[ys1:ys1 + d, xs0:xs1], w) |
|
|
if xs0 - d >= 0: |
|
|
hm[max(0, ys0 - d):min(Ht, ys1 + d), xs0 - d:xs0] = np.maximum( |
|
|
hm[max(0, ys0 - d):min(Ht, ys1 + d), xs0 - d:xs0], w) |
|
|
if xs1 + d <= Wt: |
|
|
hm[max(0, ys0 - d):min(Ht, ys1 + d), xs1:xs1 + d] = np.maximum( |
|
|
hm[max(0, ys0 - d):min(Ht, ys1 + d), xs1:xs1 + d], w) |
|
|
|
|
|
|
|
|
for out in outputs: |
|
|
try: |
|
|
arr = np.asarray(out) |
|
|
except Exception: |
|
|
continue |
|
|
arr = to_float(arr) |
|
|
if arr is None: |
|
|
continue |
|
|
a = arr |
|
|
|
|
|
while a.ndim > 2 and a.shape[0] == 1: |
|
|
a = np.squeeze(a, axis=0) |
|
|
|
|
|
if a.ndim == 2 and a.shape[-1] in (2, 3): |
|
|
pts = a |
|
|
elif a.ndim == 3 and a.shape[-1] in (2, 3): |
|
|
pts = a.reshape(-1, a.shape[-1]) |
|
|
else: |
|
|
pts = None |
|
|
if pts is not None: |
|
|
|
|
|
maxv = float(np.nanmax(np.abs(pts[:, :2]))) if pts.size else 0.0 |
|
|
for px, py, *rest in pts: |
|
|
if np.isnan(px) or np.isnan(py): |
|
|
continue |
|
|
if maxv <= 1.2: |
|
|
cx = float(px) * (Wt - 1) |
|
|
cy = float(py) * (Ht - 1) |
|
|
else: |
|
|
cx = float(px) |
|
|
cy = float(py) |
|
|
base_sig = max(1.5, min(Ht, Wt) / 128.0) |
|
|
if _ONNX_KPTS_ENABLE: |
|
|
draw_gaussian(heat, cx, cy, sigma=base_sig * float(_ONNX_KPTS_SIGMA), amp=float(_ONNX_KPTS_GAIN)) |
|
|
else: |
|
|
draw_gaussian(heat, cx, cy, sigma=base_sig) |
|
|
continue |
|
|
|
|
|
|
|
|
if _ONNX_KPTS_ENABLE and a.ndim == 2 and a.shape[-1] >= 6 and (a.shape[-1] % 3) == 0: |
|
|
K = a.shape[-1] // 3 |
|
|
if K >= 5 and K <= 256: |
|
|
|
|
|
with np.errstate(invalid='ignore'): |
|
|
maxv = float(np.nanmax(np.abs(a[:, :2]))) if a.size else 0.0 |
|
|
for i in range(a.shape[0]): |
|
|
row = a[i] |
|
|
kp = row.reshape(K, 3) |
|
|
for (px, py, pc) in kp: |
|
|
if np.isnan(px) or np.isnan(py): |
|
|
continue |
|
|
if np.isfinite(pc) and pc < float(_ONNX_KPTS_CONF): |
|
|
continue |
|
|
if maxv <= 1.2: |
|
|
cx = float(px) * (Wt - 1) |
|
|
cy = float(py) * (Ht - 1) |
|
|
else: |
|
|
cx = float(px) |
|
|
cy = float(py) |
|
|
base_sig = max(1.0, min(Ht, Wt) / 128.0) |
|
|
draw_gaussian(heat, cx, cy, sigma=base_sig * float(_ONNX_KPTS_SIGMA), amp=float(_ONNX_KPTS_GAIN)) |
|
|
continue |
|
|
|
|
|
if a.ndim == 2 and a.shape[-1] >= 4: |
|
|
boxes = a |
|
|
elif a.ndim == 3 and a.shape[-1] >= 4: |
|
|
|
|
|
if a.shape[0] == 1: |
|
|
boxes = a.reshape(-1, a.shape[-1]) |
|
|
else: |
|
|
boxes = a.reshape(-1, a.shape[-1]) |
|
|
else: |
|
|
boxes = None |
|
|
if boxes is not None: |
|
|
|
|
|
score = None |
|
|
if boxes.shape[-1] >= 6: |
|
|
score = boxes[:, 4] |
|
|
|
|
|
try: |
|
|
score = score * np.max(boxes[:, 5:], axis=-1) |
|
|
except Exception: |
|
|
pass |
|
|
elif boxes.shape[-1] == 5: |
|
|
score = boxes[:, 4] |
|
|
|
|
|
if score is not None: |
|
|
try: |
|
|
order = np.argsort(-score) |
|
|
keep = order[: min(64, order.shape[0])] |
|
|
boxes = boxes[keep] |
|
|
score = score[keep] |
|
|
except Exception: |
|
|
score = None |
|
|
|
|
|
xy = boxes[:, :4] |
|
|
maxv = float(np.nanmax(np.abs(xy))) if xy.size else 0.0 |
|
|
if maxv <= 1.2: |
|
|
x0 = xy[:, 0] * (Wt - 1) |
|
|
y0 = xy[:, 1] * (Ht - 1) |
|
|
x1 = xy[:, 2] * (Wt - 1) |
|
|
y1 = xy[:, 3] * (Ht - 1) |
|
|
else: |
|
|
x0, y0, x1, y1 = xy[:, 0], xy[:, 1], xy[:, 2], xy[:, 3] |
|
|
|
|
|
invalid = np.sum((x1 <= x0) | (y1 <= y0)) |
|
|
if invalid > 0.5 * x0.shape[0]: |
|
|
x, y, w, h = x0, y0, x1, y1 |
|
|
x0 = x - w * 0.5 |
|
|
y0 = y - h * 0.5 |
|
|
x1 = x + w * 0.5 |
|
|
y1 = y + h * 0.5 |
|
|
for i in range(x0.shape[0]): |
|
|
if score is not None and np.isfinite(score[i]) and score[i] < 0.2: |
|
|
continue |
|
|
draw_soft_rect(heat, x0[i], y0[i], x1[i], y1[i], edge=3.0) |
|
|
|
|
|
|
|
|
if _ONNX_KPTS_ENABLE and boxes.shape[-1] > 6: |
|
|
D = boxes.shape[-1] |
|
|
for i in range(boxes.shape[0]): |
|
|
row = boxes[i] |
|
|
parsed = False |
|
|
|
|
|
for offset in (6, 5, 4): |
|
|
t = D - offset |
|
|
if t >= 6 and t % 3 == 0: |
|
|
k = t // 3 |
|
|
kp = row[offset:offset + 3 * k].reshape(k, 3) |
|
|
parsed = True |
|
|
break |
|
|
if not parsed: |
|
|
continue |
|
|
for (px, py, pc) in kp: |
|
|
if np.isnan(px) or np.isnan(py): |
|
|
continue |
|
|
if pc < float(_ONNX_KPTS_CONF): |
|
|
continue |
|
|
if maxv <= 1.2: |
|
|
cx = float(px) * (Wt - 1) |
|
|
cy = float(py) * (Ht - 1) |
|
|
else: |
|
|
cx = float(px) |
|
|
cy = float(py) |
|
|
base_sig = max(1.0, min(Ht, Wt) / 128.0) |
|
|
draw_gaussian(heat, cx, cy, sigma=base_sig * float(_ONNX_KPTS_SIGMA), amp=float(_ONNX_KPTS_GAIN)) |
|
|
|
|
|
if heat.max() > 0: |
|
|
heat = np.clip(heat, 0.0, 1.0) |
|
|
return heat |
|
|
return None |
|
|
|
|
|
|
|
|
def _onnx_build_mask(image_bhwc: torch.Tensor, preview: int, sensitivity: float, models_dir: str, anomaly_gain: float = 1.0) -> torch.Tensor: |
|
|
"""Deprecated: ONNX path removed. Returns zero mask of input size.""" |
|
|
B, H, W, C = image_bhwc.shape |
|
|
return torch.zeros((B, H, W, 1), device=image_bhwc.device, dtype=image_bhwc.dtype) |
|
|
if not _try_init_onnx(models_dir): |
|
|
return torch.zeros((image_bhwc.shape[0], image_bhwc.shape[1], image_bhwc.shape[2], 1), device=image_bhwc.device, dtype=image_bhwc.dtype) |
|
|
|
|
|
if not _ONNX_SESS: |
|
|
return torch.zeros((image_bhwc.shape[0], image_bhwc.shape[1], image_bhwc.shape[2], 1), device=image_bhwc.device, dtype=image_bhwc.dtype) |
|
|
|
|
|
B, H, W, C = image_bhwc.shape |
|
|
device = image_bhwc.device |
|
|
dtype = image_bhwc.dtype |
|
|
|
|
|
|
|
|
masks = [] |
|
|
img_cpu = image_bhwc.detach().to('cpu') |
|
|
for b in range(B): |
|
|
masks_b = [] |
|
|
|
|
|
target = int(max(16, min(1024, preview))) |
|
|
xb = img_cpu[b].movedim(-1, 0).unsqueeze(0) |
|
|
x_stretch = F.interpolate(xb, size=(target, target), mode='bilinear', align_corners=False).clamp(0, 1) |
|
|
x_letter = _letterbox_nchw(xb, target).clamp(0, 1) |
|
|
|
|
|
variants = [ |
|
|
("stretch-RGB", x_stretch), |
|
|
("letterbox-RGB", x_letter), |
|
|
("stretch-BGR", x_stretch[:, [2, 1, 0], :, :]), |
|
|
("letterbox-BGR", x_letter[:, [2, 1, 0], :, :]), |
|
|
] |
|
|
if _ONNX_DEBUG: |
|
|
try: |
|
|
print(f"[CADE2.5][ONNX] Build mask for image[{b}] -> preview {target}x{target}") |
|
|
except Exception: |
|
|
pass |
|
|
|
|
|
for name, sess in list(_ONNX_SESS.items()): |
|
|
try: |
|
|
inputs = sess.get_inputs() |
|
|
if not inputs: |
|
|
continue |
|
|
in_name = inputs[0].name |
|
|
in_shape = inputs[0].shape if hasattr(inputs[0], 'shape') else None |
|
|
|
|
|
if isinstance(in_shape, (list, tuple)) and len(in_shape) == 4: |
|
|
dim_vals = [] |
|
|
for d in in_shape: |
|
|
try: |
|
|
dim_vals.append(int(d)) |
|
|
except Exception: |
|
|
dim_vals.append(-1) |
|
|
if dim_vals[-1] == 3: |
|
|
layout = "NHWC" |
|
|
else: |
|
|
layout = "NCHW" |
|
|
else: |
|
|
layout = "NCHW?" |
|
|
if _ONNX_DEBUG: |
|
|
try: |
|
|
print(f"[CADE2.5][ONNX] Model '{name}' in_shape={in_shape} layout={layout}") |
|
|
except Exception: |
|
|
pass |
|
|
|
|
|
hm = None |
|
|
chosen = None |
|
|
for vname, vx in variants: |
|
|
if layout.startswith("NHWC"): |
|
|
xin = vx.permute(0, 2, 3, 1) |
|
|
else: |
|
|
xin = vx |
|
|
for scale in (1.0, 255.0): |
|
|
inp = (xin * float(scale)).numpy().astype(np.float32) |
|
|
feed = {in_name: inp} |
|
|
outs = sess.run(None, feed) |
|
|
if _ONNX_DEBUG: |
|
|
try: |
|
|
shapes = [] |
|
|
for o in outs: |
|
|
try: |
|
|
shapes.append(tuple(np.asarray(o).shape)) |
|
|
except Exception: |
|
|
shapes.append("?") |
|
|
print(f"[CADE2.5][ONNX] '{name}' {vname} scale={scale} -> outs shapes {shapes}") |
|
|
except Exception: |
|
|
pass |
|
|
hm = _try_heatmap_from_outputs(outs, (target, target)) |
|
|
if _ONNX_DEBUG: |
|
|
try: |
|
|
if hm is None: |
|
|
print(f"[CADE2.5][ONNX] '{name}' {vname} scale={scale}: no spatial heatmap detected") |
|
|
else: |
|
|
print(f"[CADE2.5][ONNX] '{name}' {vname} scale={scale}: heat stats min={np.min(hm):.4f} max={np.max(hm):.4f} mean={np.mean(hm):.4f}") |
|
|
except Exception: |
|
|
pass |
|
|
if hm is not None and np.max(hm) > 0: |
|
|
chosen = (vname, scale) |
|
|
break |
|
|
if hm is not None and np.max(hm) > 0: |
|
|
break |
|
|
if hm is None: |
|
|
continue |
|
|
|
|
|
gain = float(max(0.0, sensitivity)) |
|
|
if 'anomaly' in name.lower(): |
|
|
gain *= float(max(0.0, anomaly_gain)) |
|
|
hm = np.clip(hm * gain, 0.0, 1.0) |
|
|
tmask = _np_to_mask_tensor(hm, H, W, device, dtype) |
|
|
if tmask is not None: |
|
|
masks_b.append(tmask) |
|
|
if _ONNX_DEBUG: |
|
|
try: |
|
|
area = float(tmask.movedim(-1,1).mean().item()) |
|
|
if chosen is not None: |
|
|
vname, scale = chosen |
|
|
print(f"[CADE2.5][ONNX] '{name}' via {vname} x{scale} area={area:.4f}") |
|
|
else: |
|
|
print(f"[CADE2.5][ONNX] '{name}' contribution area={area:.4f}") |
|
|
except Exception: |
|
|
pass |
|
|
except Exception: |
|
|
|
|
|
continue |
|
|
if not masks_b: |
|
|
masks.append(torch.zeros((1, H, W, 1), device=device, dtype=dtype)) |
|
|
else: |
|
|
|
|
|
stack = torch.stack([masks_b[i] for i in range(len(masks_b))], dim=0) |
|
|
fused = 1.0 - torch.prod(1.0 - stack.clamp(0, 1), dim=0) |
|
|
|
|
|
ch = fused.permute(0, 3, 1, 2) |
|
|
dd = F.interpolate(ch, scale_factor=0.5, mode='bilinear', align_corners=False, recompute_scale_factor=False) |
|
|
uu = F.interpolate(dd, size=(H, W), mode='bilinear', align_corners=False) |
|
|
fused = uu.permute(0, 2, 3, 1).clamp(0, 1) |
|
|
if _ONNX_DEBUG: |
|
|
try: |
|
|
area = float(fused.movedim(-1,1).mean().item()) |
|
|
print(f"[CADE2.5][ONNX] Fused area (image[{b}])={area:.4f}") |
|
|
except Exception: |
|
|
pass |
|
|
masks.append(fused) |
|
|
|
|
|
return torch.cat(masks, dim=0) |
|
|
|
|
|
def _sampler_names(): |
|
|
try: |
|
|
import comfy.samplers |
|
|
return comfy.samplers.KSampler.SAMPLERS |
|
|
except Exception: |
|
|
return ["euler"] |
|
|
|
|
|
|
|
|
def _scheduler_names(): |
|
|
try: |
|
|
import comfy.samplers |
|
|
scheds = list(comfy.samplers.KSampler.SCHEDULERS) |
|
|
if "MGHybrid" not in scheds: |
|
|
scheds.append("MGHybrid") |
|
|
return scheds |
|
|
except Exception: |
|
|
return ["normal", "MGHybrid"] |
|
|
|
|
|
|
|
|
def safe_decode(vae, lat, tile=512, ovlp=64): |
|
|
|
|
|
with torch.inference_mode(): |
|
|
h, w = lat["samples"].shape[-2:] |
|
|
if min(h, w) > 1024: |
|
|
|
|
|
ov = 128 if max(h, w) > 2048 else ovlp |
|
|
out = vae.decode_tiled(lat["samples"], tile_x=tile, tile_y=tile, overlap=ov) |
|
|
else: |
|
|
out = vae.decode(lat["samples"]) |
|
|
|
|
|
try: |
|
|
try: |
|
|
out = out.detach() |
|
|
except Exception: |
|
|
pass |
|
|
out_cpu = out |
|
|
try: |
|
|
out_cpu = out_cpu.to('cpu') |
|
|
except Exception: |
|
|
pass |
|
|
try: |
|
|
del out |
|
|
except Exception: |
|
|
pass |
|
|
if torch.cuda.is_available(): |
|
|
try: |
|
|
torch.cuda.synchronize() |
|
|
except Exception: |
|
|
pass |
|
|
try: |
|
|
torch.cuda.empty_cache() |
|
|
except Exception: |
|
|
pass |
|
|
return out_cpu |
|
|
except Exception: |
|
|
return out |
|
|
|
|
|
|
|
|
def safe_encode(vae, img, tile=512, ovlp=64): |
|
|
import math, torch.nn.functional as F |
|
|
h, w = img.shape[1:3] |
|
|
try: |
|
|
stride = int(vae.spacial_compression_decode()) |
|
|
except Exception: |
|
|
stride = 8 |
|
|
if stride <= 0: |
|
|
stride = 8 |
|
|
def _align_up(x, s): |
|
|
return int(((x + s - 1) // s) * s) |
|
|
Ht = _align_up(h, stride) |
|
|
Wt = _align_up(w, stride) |
|
|
x = img |
|
|
if (Ht != h) or (Wt != w): |
|
|
|
|
|
pad_h = Ht - h |
|
|
pad_w = Wt - w |
|
|
x_nchw = img.movedim(-1, 1) |
|
|
x_nchw = F.pad(x_nchw, (0, pad_w, 0, pad_h), mode='replicate') |
|
|
x = x_nchw.movedim(1, -1) |
|
|
if min(Ht, Wt) > 1024: |
|
|
ov = 128 if max(Ht, Wt) > 2048 else ovlp |
|
|
return vae.encode_tiled(x[:, :, :, :3], tile_x=tile, tile_y=tile, overlap=ov) |
|
|
return vae.encode(x[:, :, :, :3]) |
|
|
|
|
|
|
|
|
|
|
|
def _gaussian_kernel(kernel_size: int, sigma: float, device=None): |
|
|
x, y = torch.meshgrid( |
|
|
torch.linspace(-1, 1, kernel_size, device=device), |
|
|
torch.linspace(-1, 1, kernel_size, device=device), |
|
|
indexing="ij", |
|
|
) |
|
|
d = torch.sqrt(x * x + y * y) |
|
|
g = torch.exp(-(d * d) / (2.0 * sigma * sigma)) |
|
|
return g / g.sum() |
|
|
|
|
|
|
|
|
def _sharpen_image(image: torch.Tensor, sharpen_radius: int, sigma: float, alpha: float): |
|
|
if sharpen_radius == 0: |
|
|
return (image,) |
|
|
|
|
|
image = image.to(model_management.get_torch_device()) |
|
|
batch_size, height, width, channels = image.shape |
|
|
|
|
|
kernel_size = sharpen_radius * 2 + 1 |
|
|
kernel = _gaussian_kernel(kernel_size, sigma, device=image.device) * -(alpha * 10) |
|
|
kernel = kernel.to(dtype=image.dtype) |
|
|
center = kernel_size // 2 |
|
|
kernel[center, center] = kernel[center, center] - kernel.sum() + 1.0 |
|
|
kernel = kernel.repeat(channels, 1, 1).unsqueeze(1) |
|
|
|
|
|
tensor_image = image.permute(0, 3, 1, 2) |
|
|
tensor_image = F.pad(tensor_image, (sharpen_radius, sharpen_radius, sharpen_radius, sharpen_radius), 'reflect') |
|
|
sharpened = F.conv2d(tensor_image, kernel, padding=center, groups=channels)[:, :, sharpen_radius:-sharpen_radius, sharpen_radius:-sharpen_radius] |
|
|
sharpened = sharpened.permute(0, 2, 3, 1) |
|
|
|
|
|
result = torch.clamp(sharpened, 0, 1) |
|
|
return (result.to(model_management.intermediate_device()),) |
|
|
|
|
|
|
|
|
def _encode_clip_image(image: torch.Tensor, clip_vision, target_res: int) -> torch.Tensor: |
|
|
|
|
|
img = image.movedim(-1, 1) |
|
|
img = F.interpolate(img, size=(target_res, target_res), mode="bilinear", align_corners=False) |
|
|
img = (img * 2.0) - 1.0 |
|
|
embeds = clip_vision.encode_image(img)["image_embeds"] |
|
|
embeds = F.normalize(embeds, dim=-1) |
|
|
return embeds |
|
|
|
|
|
|
|
|
def _clip_cosine_distance(a: torch.Tensor, b: torch.Tensor) -> float: |
|
|
if a.shape != b.shape: |
|
|
m = min(a.shape[0], b.shape[0]) |
|
|
a = a[:m] |
|
|
b = b[:m] |
|
|
sim = (a * b).sum(dim=-1).mean().clamp(-1.0, 1.0).item() |
|
|
return 1.0 - sim |
|
|
|
|
|
|
|
|
def _gaussian_blur_nchw(x: torch.Tensor, sigma: float = 1.0, radius: int = 1) -> torch.Tensor: |
|
|
"""Lightweight depthwise Gaussian blur for NCHW or NCDHW tensors. |
|
|
Uses reflect padding and a normalized kernel built by _gaussian_kernel. |
|
|
""" |
|
|
if radius <= 0: |
|
|
return x |
|
|
ksz = radius * 2 + 1 |
|
|
kernel = _gaussian_kernel(ksz, sigma, device=x.device).to(dtype=x.dtype) |
|
|
|
|
|
if x.ndim == 5: |
|
|
b, c, d, h, w = x.shape |
|
|
x2 = x.permute(0, 2, 1, 3, 4).reshape(b * d, c, h, w) |
|
|
k = kernel.repeat(c, 1, 1).unsqueeze(1) |
|
|
x_pad = F.pad(x2, (radius, radius, radius, radius), mode='reflect') |
|
|
y2 = F.conv2d(x_pad, k, padding=0, groups=c) |
|
|
y = y2.reshape(b, d, c, h, w).permute(0, 2, 1, 3, 4) |
|
|
return y |
|
|
|
|
|
if x.ndim == 4: |
|
|
b, c, h, w = x.shape |
|
|
k = kernel.repeat(c, 1, 1).unsqueeze(1) |
|
|
x_pad = F.pad(x, (radius, radius, radius, radius), mode='reflect') |
|
|
y = F.conv2d(x_pad, k, padding=0, groups=c) |
|
|
return y |
|
|
|
|
|
return x |
|
|
|
|
|
|
|
|
def _letterbox_nchw(x: torch.Tensor, target: int, pad_val: float = 114.0 / 255.0) -> torch.Tensor: |
|
|
"""Letterbox a BCHW tensor to target x target with constant padding (YOLO-style). |
|
|
Preserves aspect ratio, centers content, pads with pad_val. |
|
|
""" |
|
|
if x.ndim != 4: |
|
|
return F.interpolate(x, size=(target, target), mode='bilinear', align_corners=False) |
|
|
b, c, h, w = x.shape |
|
|
if h == 0 or w == 0: |
|
|
return F.interpolate(x, size=(target, target), mode='bilinear', align_corners=False) |
|
|
r = float(min(target / max(1, h), target / max(1, w))) |
|
|
nh = max(1, int(round(h * r))) |
|
|
nw = max(1, int(round(w * r))) |
|
|
y = F.interpolate(x, size=(nh, nw), mode='bilinear', align_corners=False) |
|
|
pt = (target - nh) // 2 |
|
|
pb = target - nh - pt |
|
|
pl = (target - nw) // 2 |
|
|
pr = target - nw - pl |
|
|
if pt < 0 or pb < 0 or pl < 0 or pr < 0: |
|
|
|
|
|
return F.interpolate(x, size=(target, target), mode='bilinear', align_corners=False) |
|
|
return F.pad(y, (pl, pr, pt, pb), mode='constant', value=float(pad_val)) |
|
|
|
|
|
|
|
|
def _fdg_filter(delta: torch.Tensor, low_gain: float, high_gain: float, sigma: float = 1.0, radius: int = 1) -> torch.Tensor: |
|
|
"""Frequency-Decoupled Guidance: split delta into low/high bands and reweight. |
|
|
delta: [B,C,H,W] |
|
|
""" |
|
|
low = _gaussian_blur_nchw(delta, sigma=sigma, radius=radius) |
|
|
high = delta - low |
|
|
return low * float(low_gain) + high * float(high_gain) |
|
|
|
|
|
|
|
|
def _fdg_split_three(delta: torch.Tensor, |
|
|
sigma_lo: float = 0.8, |
|
|
sigma_hi: float = 2.0, |
|
|
radius: int = 1) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]: |
|
|
"""Tri-band split: returns (low, mid, high) for NCHW delta. |
|
|
low = G(sigma_hi) |
|
|
mid = G(sigma_lo) - G(sigma_hi) |
|
|
high = delta - G(sigma_lo) |
|
|
""" |
|
|
sig_lo = float(max(0.05, sigma_lo)) |
|
|
sig_hi = float(max(sig_lo + 1e-3, sigma_hi)) |
|
|
blur_lo = _gaussian_blur_nchw(delta, sigma=sig_lo, radius=radius) |
|
|
blur_hi = _gaussian_blur_nchw(delta, sigma=sig_hi, radius=radius) |
|
|
low = blur_hi |
|
|
mid = blur_lo - blur_hi |
|
|
high = delta - blur_lo |
|
|
return low, mid, high |
|
|
|
|
|
|
|
|
def _fdg_energy_fraction(delta: torch.Tensor, sigma: float = 1.0, radius: int = 1) -> torch.Tensor: |
|
|
"""Return fraction of high-frequency energy: E_high / (E_low + E_high).""" |
|
|
low = _gaussian_blur_nchw(delta, sigma=sigma, radius=radius) |
|
|
high = delta - low |
|
|
e_low = (low * low).mean(dim=(1, 2, 3), keepdim=True) |
|
|
e_high = (high * high).mean(dim=(1, 2, 3), keepdim=True) |
|
|
frac = e_high / (e_low + e_high + 1e-8) |
|
|
return frac |
|
|
|
|
|
|
|
|
def _wrap_model_with_guidance(model, guidance_mode: str, rescale_multiplier: float, momentum_beta: float, cfg_curve: float, perp_damp: float, use_zero_init: bool=False, zero_init_steps: int=0, fdg_low: float = 0.6, fdg_high: float = 1.3, fdg_sigma: float = 1.0, ze_zero_steps: int = 0, ze_adaptive: bool = False, ze_r_switch_hi: float = 0.6, ze_r_switch_lo: float = 0.45, fdg_low_adaptive: bool = False, fdg_low_min: float = 0.45, fdg_low_max: float = 0.7, fdg_ema_beta: float = 0.8, use_local_mask: bool = False, mask_inside: float = 1.0, mask_outside: float = 1.0, |
|
|
midfreq_enable: bool = False, midfreq_gain: float = 0.0, midfreq_sigma_lo: float = 0.8, midfreq_sigma_hi: float = 2.0, |
|
|
mahiro_plus_enable: bool = False, mahiro_plus_strength: float = 0.5, |
|
|
eps_scale_enable: bool = False, eps_scale: float = 0.0, |
|
|
|
|
|
cwn_enable: bool = True, alpha_c: float = 1.0, alpha_u: float = 1.0, |
|
|
agc_enable: bool = True, agc_tau: float = 2.8, |
|
|
|
|
|
nag_fb_enable: bool = False, nag_fb_scale: float = 4.0, nag_fb_tau: float = 2.5, nag_fb_alpha: float = 0.25): |
|
|
|
|
|
"""Clone model and attach a cfg mixing function implementing RescaleCFG/FDG, CFGZero*/FD, or hybrid ZeResFDG. |
|
|
guidance_mode: 'default' | 'RescaleCFG' | 'RescaleFDG' | 'CFGZero*' | 'CFGZeroFD' | 'ZeResFDG' |
|
|
""" |
|
|
if guidance_mode == "default": |
|
|
return model |
|
|
m = model.clone() |
|
|
|
|
|
|
|
|
prev_delta = {"t": None} |
|
|
sigma_seen = {"max": None, "min": None} |
|
|
|
|
|
spec_state = {"ema": None, "mode": "CFGZeroFD"} |
|
|
|
|
|
|
|
|
def _mg_guidance_reset(): |
|
|
try: |
|
|
prev_delta["t"] = None |
|
|
sigma_seen["max"] = None |
|
|
sigma_seen["min"] = None |
|
|
spec_state["ema"] = None |
|
|
spec_state["mode"] = "CFGZeroFD" |
|
|
except Exception: |
|
|
pass |
|
|
try: |
|
|
setattr(m, "mg_guidance_reset", _mg_guidance_reset) |
|
|
except Exception: |
|
|
pass |
|
|
|
|
|
def cfg_func(args): |
|
|
cond = args["cond"] |
|
|
uncond = args["uncond"] |
|
|
cond_scale = args["cond_scale"] |
|
|
sigma = args.get("sigma", None) |
|
|
x_orig = args.get("input", None) |
|
|
|
|
|
|
|
|
if bool(nag_fb_enable): |
|
|
try: |
|
|
from . import mg_sagpu_attention as _sa |
|
|
active = bool(getattr(_sa, "_nag_patch_active", False)) |
|
|
except Exception: |
|
|
active = False |
|
|
if not active: |
|
|
try: |
|
|
phi = float(nag_fb_scale); tau = float(nag_fb_tau); a = float(nag_fb_alpha) |
|
|
g = cond * phi - uncond * (phi - 1.0) |
|
|
def _l1(x): |
|
|
return torch.sum(torch.abs(x), dim=(1,2,3), keepdim=True).clamp_min(1e-6) |
|
|
s_pos = _l1(cond); s_g = _l1(g) |
|
|
scale = (s_pos * tau) / s_g |
|
|
g = torch.where((s_g > s_pos * tau), g * scale, g) |
|
|
cond = g * a + cond * (1.0 - a) |
|
|
except Exception: |
|
|
pass |
|
|
|
|
|
|
|
|
def _local_gain_for(hw): |
|
|
if not bool(use_local_mask): |
|
|
return None |
|
|
m = globals().get("CURRENT_ONNX_MASK_BCHW", None) |
|
|
if m is None: |
|
|
return None |
|
|
try: |
|
|
Ht, Wt = int(hw[0]), int(hw[1]) |
|
|
g = m.to(device=cond.device, dtype=cond.dtype) |
|
|
if g.shape[-2] != Ht or g.shape[-1] != Wt: |
|
|
g = F.interpolate(g, size=(Ht, Wt), mode='bilinear', align_corners=False) |
|
|
gi = float(mask_inside) |
|
|
go = float(mask_outside) |
|
|
gain = g * gi + (1.0 - g) * go |
|
|
return gain |
|
|
except Exception: |
|
|
return None |
|
|
|
|
|
|
|
|
mode = guidance_mode |
|
|
if guidance_mode == "ZeResFDG": |
|
|
if bool(ze_adaptive): |
|
|
try: |
|
|
delta_raw = args["cond"] - args["uncond"] |
|
|
frac_b = _fdg_energy_fraction(delta_raw, sigma=float(fdg_sigma), radius=1) |
|
|
frac = float(frac_b.mean().clamp(0.0, 1.0).item()) |
|
|
except Exception: |
|
|
frac = 0.0 |
|
|
if spec_state["ema"] is None: |
|
|
spec_state["ema"] = frac |
|
|
else: |
|
|
beta = float(max(0.0, min(0.99, fdg_ema_beta))) |
|
|
spec_state["ema"] = beta * float(spec_state["ema"]) + (1.0 - beta) * frac |
|
|
r = float(spec_state["ema"]) |
|
|
|
|
|
if spec_state["mode"] == "CFGZeroFD" and r >= float(ze_r_switch_hi): |
|
|
spec_state["mode"] = "RescaleFDG" |
|
|
elif spec_state["mode"] == "RescaleFDG" and r <= float(ze_r_switch_lo): |
|
|
spec_state["mode"] = "CFGZeroFD" |
|
|
mode = spec_state["mode"] |
|
|
else: |
|
|
try: |
|
|
sigmas = args["model_options"]["transformer_options"]["sample_sigmas"] |
|
|
matched_idx = (sigmas == args["timestep"][0]).nonzero() |
|
|
if len(matched_idx) > 0: |
|
|
current_idx = matched_idx.item() |
|
|
else: |
|
|
current_idx = 0 |
|
|
except Exception: |
|
|
current_idx = 0 |
|
|
mode = "CFGZeroFD" if current_idx <= int(ze_zero_steps) else "RescaleFDG" |
|
|
|
|
|
if mode in ("CFGZero*", "CFGZeroFD"): |
|
|
|
|
|
if use_zero_init and "model_options" in args and args.get("timestep") is not None: |
|
|
try: |
|
|
sigmas = args["model_options"]["transformer_options"]["sample_sigmas"] |
|
|
matched_idx = (sigmas == args["timestep"][0]).nonzero() |
|
|
if len(matched_idx) > 0: |
|
|
current_idx = matched_idx.item() |
|
|
else: |
|
|
|
|
|
current_idx = 0 |
|
|
if current_idx <= int(zero_init_steps): |
|
|
return cond * 0.0 |
|
|
except Exception: |
|
|
pass |
|
|
|
|
|
if bool(cwn_enable): |
|
|
try: |
|
|
_eps = 1e-6 |
|
|
sc = (cond.pow(2).mean(dim=(1, 2, 3), keepdim=True).sqrt() + _eps) |
|
|
su = (uncond.pow(2).mean(dim=(1, 2, 3), keepdim=True).sqrt() + _eps) |
|
|
g = 0.5 * (sc + su) |
|
|
cond = cond * (float(alpha_c) * g / sc) |
|
|
uncond = uncond * (float(alpha_u) * g / su) |
|
|
except Exception: |
|
|
pass |
|
|
|
|
|
bsz = cond.shape[0] |
|
|
pos_flat = cond.view(bsz, -1) |
|
|
neg_flat = uncond.view(bsz, -1) |
|
|
dot = torch.sum(pos_flat * neg_flat, dim=1, keepdim=True) |
|
|
denom = torch.sum(neg_flat * neg_flat, dim=1, keepdim=True).clamp_min(1e-8) |
|
|
alpha = (dot / denom).view(bsz, *([1] * (cond.dim() - 1))) |
|
|
resid = cond - uncond * alpha |
|
|
|
|
|
low_gain_eff = float(fdg_low) |
|
|
if bool(fdg_low_adaptive) and spec_state["ema"] is not None: |
|
|
s = float(spec_state["ema"]) |
|
|
lmin = float(fdg_low_min) |
|
|
lmax = float(fdg_low_max) |
|
|
low_gain_eff = max(0.0, min(2.0, lmin + (lmax - lmin) * s)) |
|
|
if mode == "CFGZeroFD": |
|
|
resid = _fdg_filter(resid, low_gain=low_gain_eff, high_gain=fdg_high, sigma=float(fdg_sigma), radius=1) |
|
|
|
|
|
lg = _local_gain_for((cond.shape[-2], cond.shape[-1])) |
|
|
if lg is not None: |
|
|
resid = resid * lg.expand(-1, resid.shape[1], -1, -1) |
|
|
noise_pred = uncond * alpha + cond_scale * resid |
|
|
return noise_pred |
|
|
|
|
|
|
|
|
delta = cond - uncond |
|
|
pd = float(max(0.0, min(1.0, perp_damp))) |
|
|
if pd > 0.0 and (prev_delta["t"] is not None) and (prev_delta["t"].shape == delta.shape): |
|
|
prev = prev_delta["t"] |
|
|
denom = (prev * prev).sum(dim=(1,2,3), keepdim=True).clamp_min(1e-6) |
|
|
coeff = ((delta * prev).sum(dim=(1,2,3), keepdim=True) / denom) |
|
|
parallel = coeff * prev |
|
|
delta = delta - pd * parallel |
|
|
beta = float(max(0.0, min(0.95, momentum_beta))) |
|
|
if beta > 0.0: |
|
|
if prev_delta["t"] is None or prev_delta["t"].shape != delta.shape: |
|
|
prev_delta["t"] = delta.detach() |
|
|
delta = (1.0 - beta) * delta + beta * prev_delta["t"] |
|
|
prev_delta["t"] = delta.detach() |
|
|
cond = uncond + delta |
|
|
else: |
|
|
prev_delta["t"] = delta.detach() |
|
|
|
|
|
if bool(agc_enable): |
|
|
try: |
|
|
t = float(max(0.5, agc_tau)) |
|
|
delta = t * torch.tanh(delta / t) |
|
|
except Exception: |
|
|
pass |
|
|
|
|
|
if mode == "RescaleFDG": |
|
|
|
|
|
low_gain_eff = float(fdg_low) |
|
|
if bool(fdg_low_adaptive) and spec_state["ema"] is not None: |
|
|
s = float(spec_state["ema"]) |
|
|
lmin = float(fdg_low_min) |
|
|
lmax = float(fdg_low_max) |
|
|
low_gain_eff = max(0.0, min(2.0, lmin + (lmax - lmin) * s)) |
|
|
delta_fdg = _fdg_filter(delta, low_gain=low_gain_eff, high_gain=fdg_high, sigma=float(fdg_sigma), radius=1) |
|
|
|
|
|
if bool(midfreq_enable) and abs(float(midfreq_gain)) > 1e-6: |
|
|
lo, mid, hi = _fdg_split_three(delta, sigma_lo=float(midfreq_sigma_lo), sigma_hi=float(midfreq_sigma_hi), radius=1) |
|
|
|
|
|
lg = _local_gain_for((cond.shape[-2], cond.shape[-1])) |
|
|
if lg is not None: |
|
|
mid = mid * lg.expand(-1, mid.shape[1], -1, -1) |
|
|
delta_fdg = delta_fdg + float(midfreq_gain) * mid |
|
|
lg = _local_gain_for((cond.shape[-2], cond.shape[-1])) |
|
|
if lg is not None: |
|
|
delta_fdg = delta_fdg * lg.expand(-1, delta_fdg.shape[1], -1, -1) |
|
|
cond = uncond + delta_fdg |
|
|
else: |
|
|
lg = _local_gain_for((cond.shape[-2], cond.shape[-1])) |
|
|
if lg is not None: |
|
|
delta = delta * lg.expand(-1, delta.shape[1], -1, -1) |
|
|
cond = uncond + delta |
|
|
|
|
|
cond_scale_eff = cond_scale |
|
|
if cfg_curve > 0.0 and (sigma is not None): |
|
|
s = sigma |
|
|
if s.ndim > 1: |
|
|
s = s.flatten() |
|
|
s_max = float(torch.max(s).item()) |
|
|
s_min = float(torch.min(s).item()) |
|
|
if sigma_seen["max"] is None: |
|
|
sigma_seen["max"] = s_max |
|
|
sigma_seen["min"] = s_min |
|
|
else: |
|
|
sigma_seen["max"] = max(sigma_seen["max"], s_max) |
|
|
sigma_seen["min"] = min(sigma_seen["min"], s_min) |
|
|
lo = max(1e-6, sigma_seen["min"]) |
|
|
hi = max(lo * (1.0 + 1e-6), sigma_seen["max"]) |
|
|
t = (torch.log(s + 1e-6) - torch.log(torch.tensor(lo, device=sigma.device))) / (torch.log(torch.tensor(hi, device=sigma.device)) - torch.log(torch.tensor(lo, device=sigma.device)) + 1e-6) |
|
|
t = t.clamp(0.0, 1.0) |
|
|
k = 6.0 * float(cfg_curve) |
|
|
s_curve = torch.tanh((t - 0.5) * k) |
|
|
gain = 1.0 + 0.15 * float(cfg_curve) * s_curve |
|
|
if gain.ndim > 0: |
|
|
gain = gain.mean().item() |
|
|
cond_scale_eff = cond_scale * float(gain) |
|
|
|
|
|
|
|
|
eps_mult = 1.0 |
|
|
if bool(eps_scale_enable) and (sigma is not None): |
|
|
try: |
|
|
s = sigma |
|
|
if s.ndim > 1: |
|
|
s = s.flatten() |
|
|
s_max = float(torch.max(s).item()) |
|
|
s_min = float(torch.min(s).item()) |
|
|
if sigma_seen["max"] is None: |
|
|
sigma_seen["max"] = s_max |
|
|
sigma_seen["min"] = s_min |
|
|
else: |
|
|
sigma_seen["max"] = max(sigma_seen["max"], s_max) |
|
|
sigma_seen["min"] = min(sigma_seen["min"], s_min) |
|
|
lo = max(1e-6, sigma_seen["min"]) |
|
|
hi = max(lo * (1.0 + 1e-6), sigma_seen["max"]) |
|
|
t_lin = (torch.log(s + 1e-6) - torch.log(torch.tensor(lo, device=sigma.device))) / (torch.log(torch.tensor(hi, device=sigma.device)) - torch.log(torch.tensor(lo, device=sigma.device)) + 1e-6) |
|
|
t_lin = t_lin.clamp(0.0, 1.0) |
|
|
w_early = (1.0 - t_lin).mean().item() |
|
|
eps_mult = float(1.0 + eps_scale * w_early) |
|
|
except Exception: |
|
|
eps_mult = float(1.0 + eps_scale) |
|
|
|
|
|
if sigma is None or x_orig is None: |
|
|
return uncond + cond_scale * (cond - uncond) |
|
|
sigma_ = sigma.view(sigma.shape[:1] + (1,) * (cond.ndim - 1)) |
|
|
x = x_orig / (sigma_ * sigma_ + 1.0) |
|
|
v_cond = ((x - (x_orig - cond)) * (sigma_ ** 2 + 1.0) ** 0.5) / (sigma_) |
|
|
v_uncond = ((x - (x_orig - uncond)) * (sigma_ ** 2 + 1.0) ** 0.5) / (sigma_) |
|
|
|
|
|
if bool(cwn_enable): |
|
|
try: |
|
|
_e = 1e-6 |
|
|
rc = (v_cond.pow(2).mean(dim=(1,2,3), keepdim=True).sqrt() + _e) |
|
|
ru = (v_uncond.pow(2).mean(dim=(1,2,3), keepdim=True).sqrt() + _e) |
|
|
v_cond_n = (v_cond / rc) * float(alpha_c) |
|
|
v_uncond_n = (v_uncond / ru) * float(alpha_u) |
|
|
except Exception: |
|
|
v_cond_n, v_uncond_n = v_cond, v_uncond |
|
|
else: |
|
|
v_cond_n, v_uncond_n = v_cond, v_uncond |
|
|
v_cfg = v_uncond_n + cond_scale_eff * (v_cond_n - v_uncond_n) |
|
|
ro_pos = torch.std(v_cond_n, dim=(1, 2, 3), keepdim=True) |
|
|
ro_cfg = torch.std(v_cfg, dim=(1, 2, 3), keepdim=True).clamp_min(1e-6) |
|
|
v_rescaled = v_cfg * (ro_pos / ro_cfg) |
|
|
v_final = float(rescale_multiplier) * v_rescaled + (1.0 - float(rescale_multiplier)) * v_cfg |
|
|
eps = x_orig - (x - (v_final * eps_mult) * sigma_ / (sigma_ * sigma_ + 1.0) ** 0.5) |
|
|
return eps |
|
|
|
|
|
m.set_model_sampler_cfg_function(cfg_func, disable_cfg1_optimization=True) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if bool(mahiro_plus_enable): |
|
|
s_clamp = float(max(0.0, min(1.0, mahiro_plus_strength))) |
|
|
mb_state = {"ema": None} |
|
|
|
|
|
def _sqrt_sign(x: torch.Tensor) -> torch.Tensor: |
|
|
return x.sign() * torch.sqrt(x.abs().clamp_min(1e-12)) |
|
|
|
|
|
def _hp_split(x: torch.Tensor, radius: int = 1, sigma: float = 1.0): |
|
|
low = _gaussian_blur_nchw(x, sigma=sigma, radius=radius) |
|
|
high = x - low |
|
|
return low, high |
|
|
|
|
|
def _sched_gain(args) -> float: |
|
|
|
|
|
try: |
|
|
sigmas = args["model_options"]["transformer_options"]["sample_sigmas"] |
|
|
idx_t = args.get("timestep", None) |
|
|
if idx_t is None: |
|
|
return 1.0 |
|
|
matched = (sigmas == idx_t[0]).nonzero() |
|
|
if len(matched) == 0: |
|
|
return 1.0 |
|
|
i = float(matched.item()) |
|
|
n = float(sigmas.shape[0]) |
|
|
if n <= 1: |
|
|
return 1.0 |
|
|
phase = i / (n - 1.0) |
|
|
tri = 1.0 - abs(2.0 * phase - 1.0) |
|
|
return float(0.6 + 0.4 * tri) |
|
|
except Exception: |
|
|
return 1.0 |
|
|
|
|
|
def mahiro_plus_post(args): |
|
|
try: |
|
|
scale = args.get('cond_scale', 1.0) |
|
|
cond_p = args['cond_denoised'] |
|
|
uncond_p = args['uncond_denoised'] |
|
|
cfg = args['denoised'] |
|
|
|
|
|
|
|
|
bsz = cond_p.shape[0] |
|
|
pos_flat = cond_p.view(bsz, -1) |
|
|
neg_flat = uncond_p.view(bsz, -1) |
|
|
dot = torch.sum(pos_flat * neg_flat, dim=1, keepdim=True) |
|
|
denom = torch.sum(neg_flat * neg_flat, dim=1, keepdim=True).clamp_min(1e-8) |
|
|
alpha = (dot / denom).view(bsz, *([1] * (cond_p.dim() - 1))) |
|
|
c_orth = cond_p - uncond_p * alpha |
|
|
|
|
|
leap_raw = float(scale) * c_orth |
|
|
|
|
|
low, high = _hp_split(leap_raw, radius=1, sigma=1.0) |
|
|
leap = 0.35 * low + 1.00 * high |
|
|
|
|
|
|
|
|
u_leap = float(scale) * uncond_p |
|
|
merge = 0.5 * (leap + cfg) |
|
|
nu = _sqrt_sign(u_leap).flatten(1) |
|
|
nm = _sqrt_sign(merge).flatten(1) |
|
|
sim = F.cosine_similarity(nu, nm, dim=1).mean() |
|
|
a = torch.clamp((sim + 1.0) * 0.5, 0.0, 1.0) |
|
|
|
|
|
if mb_state["ema"] is None: |
|
|
mb_state["ema"] = float(a) |
|
|
else: |
|
|
mb_state["ema"] = 0.8 * float(mb_state["ema"]) + 0.2 * float(a) |
|
|
a_eff = float(mb_state["ema"]) |
|
|
w = a_eff * cfg + (1.0 - a_eff) * leap |
|
|
|
|
|
|
|
|
dims = tuple(range(1, w.dim())) |
|
|
ro_w = torch.std(w, dim=dims, keepdim=True).clamp_min(1e-6) |
|
|
ro_cfg = torch.std(cfg, dim=dims, keepdim=True).clamp_min(1e-6) |
|
|
w_res = w * (ro_cfg / ro_w) |
|
|
|
|
|
|
|
|
s_eff = s_clamp * _sched_gain(args) |
|
|
out = (1.0 - s_eff) * cfg + s_eff * w_res |
|
|
return out |
|
|
except Exception: |
|
|
return args['denoised'] |
|
|
|
|
|
try: |
|
|
m.set_model_sampler_post_cfg_function(mahiro_plus_post) |
|
|
except Exception: |
|
|
pass |
|
|
|
|
|
|
|
|
|
|
|
def _qclamp_post(args): |
|
|
try: |
|
|
x = args.get("denoised", None) |
|
|
if x is None: |
|
|
return args["denoised"] |
|
|
dt = x.dtype |
|
|
xf = x.to(dtype=torch.float32) |
|
|
B = xf.shape[0] |
|
|
lo_q, hi_q = 0.001, 0.999 |
|
|
out = [] |
|
|
for i in range(B): |
|
|
t = xf[i].reshape(-1) |
|
|
try: |
|
|
lo = torch.quantile(t, lo_q) |
|
|
hi = torch.quantile(t, hi_q) |
|
|
except Exception: |
|
|
n = t.numel() |
|
|
k_lo = max(1, int(n * lo_q)) |
|
|
k_hi = max(1, int(n * hi_q)) |
|
|
lo = torch.kthvalue(t, k_lo).values |
|
|
hi = torch.kthvalue(t, k_hi).values |
|
|
out.append(xf[i].clamp(min=lo, max=hi)) |
|
|
y = torch.stack(out, dim=0).to(dtype=dt) |
|
|
return y |
|
|
except Exception: |
|
|
return args["denoised"] |
|
|
|
|
|
try: |
|
|
m.set_model_sampler_post_cfg_function(_qclamp_post) |
|
|
except Exception: |
|
|
pass |
|
|
|
|
|
return m |
|
|
|
|
|
|
|
|
|
|
|
@torch.no_grad() |
|
|
def _aqclip_lite(latent_bchw: torch.Tensor, |
|
|
tile: int = 32, |
|
|
stride: int = 16, |
|
|
alpha: float = 2.0, |
|
|
ema_state: dict | None = None, |
|
|
ema_beta: float = 0.8, |
|
|
H_override: torch.Tensor | None = None) -> tuple[torch.Tensor, dict]: |
|
|
try: |
|
|
z = latent_bchw |
|
|
B, C, H, W = z.shape |
|
|
dev, dt = z.device, z.dtype |
|
|
ksize = max(8, min(int(tile), min(H, W))) |
|
|
kstride = max(1, min(int(stride), ksize)) |
|
|
|
|
|
|
|
|
if (H_override is not None) and isinstance(H_override, torch.Tensor): |
|
|
hsrc = H_override.to(device=dev, dtype=dt) |
|
|
if hsrc.dim() == 3: |
|
|
hsrc = hsrc.unsqueeze(1) |
|
|
gpool = F.avg_pool2d(hsrc, kernel_size=ksize, stride=kstride) |
|
|
else: |
|
|
zm = z.mean(dim=1, keepdim=True) |
|
|
kx = torch.tensor([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]], device=dev, dtype=dt).view(1, 1, 3, 3) |
|
|
ky = torch.tensor([[-1, -2, -1], [0, 0, 0], [1, 2, 1]], device=dev, dtype=dt).view(1, 1, 3, 3) |
|
|
gx = F.conv2d(zm, kx, padding=1) |
|
|
gy = F.conv2d(zm, ky, padding=1) |
|
|
gmag = torch.sqrt(gx * gx + gy * gy) |
|
|
gpool = F.avg_pool2d(gmag, kernel_size=ksize, stride=kstride) |
|
|
gmax = gpool.amax(dim=(2, 3), keepdim=True).clamp_min(1e-6) |
|
|
Hn = (gpool / gmax).squeeze(1) |
|
|
L = Hn.shape[1] * Hn.shape[2] |
|
|
Hn = Hn.reshape(B, L) |
|
|
|
|
|
|
|
|
ql = 0.5 * (Hn ** 2) |
|
|
qh = 1.0 - 0.5 * ((1.0 - Hn) ** 2) |
|
|
|
|
|
|
|
|
unf = F.unfold(z, kernel_size=ksize, stride=kstride) |
|
|
M = unf.shape[1] |
|
|
mu = unf.mean(dim=1).to(torch.float32) |
|
|
var = (unf.to(torch.float32) - mu.unsqueeze(1)).pow(2).mean(dim=1) |
|
|
sigma = (var + 1e-12).sqrt() |
|
|
|
|
|
|
|
|
def _ndtri(q: torch.Tensor) -> torch.Tensor: |
|
|
return (2.0 ** 0.5) * torch.special.erfinv(q.mul(2.0).sub(1.0).clamp(-0.999999, 0.999999)) |
|
|
k_neg = _ndtri(ql).abs() |
|
|
k_pos = _ndtri(qh).abs() |
|
|
lo = mu - k_neg * sigma |
|
|
hi = mu + k_pos * sigma |
|
|
|
|
|
|
|
|
if ema_state is None: |
|
|
ema_state = {} |
|
|
b = float(max(0.0, min(0.999, ema_beta))) |
|
|
if 'lo' in ema_state and 'hi' in ema_state and ema_state['lo'].shape == lo.shape: |
|
|
lo = b * ema_state['lo'] + (1.0 - b) * lo |
|
|
hi = b * ema_state['hi'] + (1.0 - b) * hi |
|
|
ema_state['lo'] = lo.detach() |
|
|
ema_state['hi'] = hi.detach() |
|
|
|
|
|
|
|
|
mid = (lo + hi) * 0.5 |
|
|
half = (hi - lo) * 0.5 |
|
|
half = half.clamp_min(1e-6) |
|
|
y = (unf.to(torch.float32) - mid.unsqueeze(1)) / half.unsqueeze(1) |
|
|
y = torch.tanh(float(alpha) * y) |
|
|
unf_clipped = mid.unsqueeze(1) + half.unsqueeze(1) * y |
|
|
unf_clipped = unf_clipped.to(dt) |
|
|
|
|
|
out = F.fold(unf_clipped, output_size=(H, W), kernel_size=ksize, stride=kstride) |
|
|
ones = torch.ones((B, M, L), device=dev, dtype=dt) |
|
|
w = F.fold(ones, output_size=(H, W), kernel_size=ksize, stride=kstride).clamp_min(1e-6) |
|
|
out = out / w |
|
|
return out, ema_state |
|
|
except Exception: |
|
|
return latent_bchw, (ema_state or {}) |
|
|
|
|
|
class ComfyAdaptiveDetailEnhancer25: |
|
|
@classmethod |
|
|
def INPUT_TYPES(cls): |
|
|
return { |
|
|
"required": { |
|
|
"model": ("MODEL", {}), |
|
|
"positive": ("CONDITIONING", {}), |
|
|
"negative": ("CONDITIONING", {}), |
|
|
"vae": ("VAE", {}), |
|
|
"latent": ("LATENT", {}), |
|
|
"seed": ("INT", {"default": 0, "min": 0, "max": 0xFFFFFFFFFFFFFFFF}), |
|
|
"steps": ("INT", {"default": 20, "min": 1, "max": 10000}), |
|
|
"cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step": 0.1}), |
|
|
"denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.0001}), |
|
|
"sampler_name": (_sampler_names(), {"default": _sampler_names()[0]}), |
|
|
"scheduler": (_scheduler_names(), {"default": _scheduler_names()[0]}), |
|
|
"iterations": ("INT", {"default": 1, "min": 1, "max": 1000}), |
|
|
"steps_delta": ("FLOAT", {"default": 0.0, "min": -1000.0, "max": 1000.0, "step": 0.01}), |
|
|
"cfg_delta": ("FLOAT", {"default": 0.0, "min": -100.0, "max": 100.0, "step": 0.01}), |
|
|
"denoise_delta": ("FLOAT", {"default": 0.0, "min": -1.0, "max": 1.0, "step": 0.0001}), |
|
|
"apply_sharpen": ("BOOLEAN", {"default": False}), |
|
|
"apply_upscale": ("BOOLEAN", {"default": False}), |
|
|
"apply_ids": ("BOOLEAN", {"default": False}), |
|
|
"clip_clean": ("BOOLEAN", {"default": False}), |
|
|
"ids_strength": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01}), |
|
|
"upscale_method": (MagicUpscaleModule.upscale_methods, {"default": "lanczos"}), |
|
|
"scale_by": ("FLOAT", {"default": 1.2, "min": 1.0, "max": 8.0, "step": 0.01}), |
|
|
"scale_delta": ("FLOAT", {"default": 0.0, "min": -8.0, "max": 8.0, "step": 0.01}), |
|
|
"noise_offset": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 0.5, "step": 0.01}), |
|
|
"threshold": ("FLOAT", {"default": 0.03, "min": 0.0, "max": 1.0, "step": 0.001, "tooltip": "RMS latent drift threshold (smaller = more damping)."}), |
|
|
}, |
|
|
"optional": { |
|
|
"Sharpnes_strenght": ("FLOAT", {"default": 0.300, "min": 0.0, "max": 1.0, "step": 0.001}), |
|
|
"latent_compare": ("BOOLEAN", {"default": False, "tooltip": "Use latent drift to gently damp params (safer than overwriting latents)."}), |
|
|
"accumulation": (["default", "fp32+fp16", "fp32+fp32"], {"default": "default", "tooltip": "Override SageAttention PV accumulation mode for this node run."}), |
|
|
"reference_clean": ("BOOLEAN", {"default": False, "tooltip": "Use CLIP-Vision similarity to a reference image to stabilize output."}), |
|
|
"reference_image": ("IMAGE", {}), |
|
|
"clip_vision": ("CLIP_VISION", {}), |
|
|
"ref_preview": ("INT", {"default": 224, "min": 64, "max": 512, "step": 16}), |
|
|
"ref_threshold": ("FLOAT", {"default": 0.03, "min": 0.0, "max": 0.2, "step": 0.001}), |
|
|
"ref_cooldown": ("INT", {"default": 1, "min": 1, "max": 8}), |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"guidance_mode": (["default", "RescaleCFG", "RescaleFDG", "CFGZero*", "CFGZeroFD", "ZeResFDG"], {"default": "RescaleCFG", "tooltip": "Rescale (stable), RescaleFDG (spectral), CFGZero*, CFGZeroFD, or hybrid ZeResFDG."}), |
|
|
"rescale_multiplier": ("FLOAT", {"default": 0.7, "min": 0.0, "max": 1.0, "step": 0.01, "tooltip": "Blend between rescaled and plain CFG (like comfy RescaleCFG)."}), |
|
|
"momentum_beta": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 0.95, "step": 0.01, "tooltip": "EMA momentum in eps-space for (cond-uncond), 0 to disable."}), |
|
|
"cfg_curve": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01, "tooltip": "S-curve shaping of cond_scale across steps (0=flat)."}), |
|
|
"perp_damp": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01, "tooltip": "Remove a small portion of the component parallel to previous delta (0-1)."}), |
|
|
|
|
|
|
|
|
"cwn_enable": ("BOOLEAN", {"default": True, "tooltip": "Normalize cond/uncond energy to steady CFG mixing."}), |
|
|
"alpha_c": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 2.0, "step": 0.01}), |
|
|
"alpha_u": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 2.0, "step": 0.01}), |
|
|
"agc_enable": ("BOOLEAN", {"default": True, "tooltip": "Soft-clip residual guidance to prevent rare spikes."}), |
|
|
"agc_tau": ("FLOAT", {"default": 2.8, "min": 0.5, "max": 6.0, "step": 0.1}), |
|
|
|
|
|
|
|
|
"use_nag": ("BOOLEAN", {"default": False, "tooltip": "Apply NAG inside CrossAttention (positive branch) during this node."}), |
|
|
"nag_scale": ("FLOAT", {"default": 4.0, "min": 0.0, "max": 50.0, "step": 0.1}), |
|
|
"nag_tau": ("FLOAT", {"default": 2.5, "min": 0.0, "max": 10.0, "step": 0.01}), |
|
|
"nag_alpha": ("FLOAT", {"default": 0.25, "min": 0.0, "max": 1.0, "step": 0.01}), |
|
|
|
|
|
|
|
|
"aqclip_enable": ("BOOLEAN", {"default": False, "tooltip": "Adaptive soft tile clipping with overlap (reduces spikes on uncertain regions)."}), |
|
|
"aq_tile": ("INT", {"default": 32, "min": 8, "max": 128, "step": 1}), |
|
|
"aq_stride": ("INT", {"default": 16, "min": 4, "max": 128, "step": 1}), |
|
|
"aq_alpha": ("FLOAT", {"default": 2.0, "min": 0.5, "max": 4.0, "step": 0.1}), |
|
|
"aq_ema_beta": ("FLOAT", {"default": 0.8, "min": 0.0, "max": 0.99, "step": 0.01}), |
|
|
"aq_attn": ("BOOLEAN", {"default": False, "tooltip": "Use attention entropy as confidence (requires patched attention)."}), |
|
|
|
|
|
|
|
|
"use_zero_init": ("BOOLEAN", {"default": False, "tooltip": "For CFGZero*, zero out first few steps."}), |
|
|
"zero_init_steps": ("INT", {"default": 0, "min": 0, "max": 20, "step": 1}), |
|
|
|
|
|
|
|
|
"fdg_low": ("FLOAT", {"default": 0.6, "min": 0.0, "max": 2.0, "step": 0.01, "tooltip": "Low-frequency gain (<1 to restrain masses)."}), |
|
|
"fdg_high": ("FLOAT", {"default": 1.3, "min": 0.5, "max": 2.5, "step": 0.01, "tooltip": "High-frequency gain (>1 to boost details)."}), |
|
|
"fdg_sigma": ("FLOAT", {"default": 1.0, "min": 0.5, "max": 2.5, "step": 0.05, "tooltip": "Gaussian sigma for FDG low-pass split."}), |
|
|
"ze_res_zero_steps": ("INT", {"default": 2, "min": 0, "max": 20, "step": 1, "tooltip": "Hybrid: number of initial steps to use CFGZeroFD before switching to RescaleFDG."}), |
|
|
|
|
|
|
|
|
"ze_adaptive": ("BOOLEAN", {"default": False, "tooltip": "Enable spectral switch: CFGZeroFD, RescaleFDG by HF/LF ratio (EMA)."}), |
|
|
"ze_r_switch_hi": ("FLOAT", {"default": 0.60, "min": 0.10, "max": 0.95, "step": 0.01, "tooltip": "Switch to RescaleFDG when EMA fraction of high-frequency."}), |
|
|
"ze_r_switch_lo": ("FLOAT", {"default": 0.45, "min": 0.05, "max": 0.90, "step": 0.01, "tooltip": "Switch back to CFGZeroFD when EMA fraction (hysteresis)."}), |
|
|
"fdg_low_adaptive": ("BOOLEAN", {"default": False, "tooltip": "Adapt fdg_low by HF fraction (EMA)."}), |
|
|
"fdg_low_min": ("FLOAT", {"default": 0.45, "min": 0.0, "max": 1.0, "step": 0.01, "tooltip": "Lower bound for adaptive fdg_low."}), |
|
|
"fdg_low_max": ("FLOAT", {"default": 0.70, "min": 0.0, "max": 2.0, "step": 0.01, "tooltip": "Upper bound for adaptive fdg_low."}), |
|
|
"fdg_ema_beta": ("FLOAT", {"default": 0.80, "min": 0.0, "max": 0.99, "step": 0.01, "tooltip": "EMA smoothing for spectral ratio (higher = smoother)."}), |
|
|
|
|
|
|
|
|
"midfreq_enable": ("BOOLEAN", {"default": True, "tooltip": "Enable mid-frequency stabilizer (band-pass) to keep hands/objects stable at hi-res."}), |
|
|
"midfreq_gain": ("FLOAT", {"default": 0.65, "min": 0.0, "max": 2.0, "step": 0.01, "tooltip": "Blend amount of mid-frequency band added on top of FDG guidance (0..2)."}), |
|
|
"midfreq_sigma_lo": ("FLOAT", {"default": 0.55, "min": 0.05, "max": 2.0, "step": 0.01, "tooltip": "Lower Gaussian sigma for band split (controls smaller forms)."}), |
|
|
"midfreq_sigma_hi": ("FLOAT", {"default": 1.30, "min": 0.10, "max": 3.0, "step": 0.01, "tooltip": "Upper Gaussian sigma for band split (controls larger forms)."}), |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"muse_blend": ("BOOLEAN", {"default": False, "tooltip": "Enable Muse Blend (Mahiro+): gentle directional positive blend (global)."}), |
|
|
"muse_blend_strength": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01, "tooltip": "Overall influence of Muse Blend over baseline CFG (0..1)."}), |
|
|
|
|
|
"eps_scale_enable": ("BOOLEAN", {"default": False, "tooltip": "Exposure Bias Correction: scale predicted noise early in schedule."}), |
|
|
"eps_scale": ("FLOAT", {"default": 0.005, "min": -1.0, "max": 1.0, "step": 0.0005, "tooltip": "Signed scaling near early steps (recommended ~0.0045; use with care)."}), |
|
|
|
|
|
"kv_prune_enable": ("BOOLEAN", {"default": False, "tooltip": "Speed: prune K/V tokens in self-attention by energy (safe on hi-res blocks)."}), |
|
|
"kv_keep": ("FLOAT", {"default": 0.85, "min": 0.5, "max": 1.0, "step": 0.01, "tooltip": "Fraction of tokens to keep when KV pruning is enabled."}), |
|
|
"kv_min_tokens": ("INT", {"default": 128, "min": 1, "max": 16384, "step": 1, "tooltip": "Minimum sequence length to apply KV pruning."}), |
|
|
"clipseg_enable": ("BOOLEAN", {"default": False, "tooltip": "Use CLIPSeg to build a text-driven mask (e.g., 'eyes | hands | face')."}), |
|
|
"clipseg_text": ("STRING", {"default": "", "multiline": False}), |
|
|
"clipseg_preview": ("INT", {"default": 224, "min": 64, "max": 512, "step": 16}), |
|
|
"clipseg_threshold": ("FLOAT", {"default": 0.40, "min": 0.0, "max": 1.0, "step": 0.05}), |
|
|
"clipseg_blur": ("FLOAT", {"default": 7.0, "min": 0.0, "max": 15.0, "step": 0.1}), |
|
|
"clipseg_dilate": ("INT", {"default": 4, "min": 0, "max": 10, "step": 1}), |
|
|
"clipseg_gain": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 3.0, "step": 0.01}), |
|
|
"clipseg_blend": (["fuse", "replace", "intersect"], {"default": "fuse", "tooltip": "How to combine CLIPSeg with any pre-mask (if present)."}), |
|
|
"clipseg_ref_gate": ("BOOLEAN", {"default": False, "tooltip": "If reference provided, boost mask when far from reference (CLIP-Vision)."}), |
|
|
"clipseg_ref_threshold": ("FLOAT", {"default": 0.03, "min": 0.0, "max": 0.2, "step": 0.001}), |
|
|
|
|
|
"auto_save": ("BOOLEAN", {"default": False, "tooltip": "Save final IMAGE directly from CADE (uses low PNG compress to reduce RAM)."}), |
|
|
"save_prefix": ("STRING", {"default": "ComfyUI", "multiline": False}), |
|
|
"save_compress": ("INT", {"default": 1, "min": 0, "max": 9, "step": 1}), |
|
|
|
|
|
|
|
|
"polish_enable": ("BOOLEAN", {"default": False, "tooltip": "Polish: keep low-frequency shape from reference while allowing high-frequency details to refine."}), |
|
|
"polish_keep_low": ("FLOAT", {"default": 0.4, "min": 0.0, "max": 1.0, "step": 0.01, "tooltip": "How much low-frequency (global form, lighting) to take from reference image (0=use current, 1=use reference)."}), |
|
|
"polish_edge_lock": ("FLOAT", {"default": 0.2, "min": 0.0, "max": 1.0, "step": 0.01, "tooltip": "Edge lock strength: protects edges from sideways drift (0=off, 1=strong)."}), |
|
|
"polish_sigma": ("FLOAT", {"default": 1.0, "min": 0.3, "max": 3.0, "step": 0.1, "tooltip": "Radius for low/high split: larger keeps bigger shapes as 'low' (global form)."}), |
|
|
"polish_start_after": ("INT", {"default": 1, "min": 0, "max": 3, "step": 1, "tooltip": "Enable polish after N iterations (0=immediately)."}), |
|
|
"polish_keep_low_ramp": ("FLOAT", {"default": 0.2, "min": 0.0, "max": 1.0, "step": 0.01, "tooltip": "Starting share of low-frequency mix; ramps to polish_keep_low over remaining iterations."}), |
|
|
|
|
|
}, |
|
|
} |
|
|
|
|
|
RETURN_TYPES = ("LATENT", "IMAGE", "INT", "FLOAT", "FLOAT", "IMAGE") |
|
|
RETURN_NAMES = ("LATENT", "IMAGE", "steps", "cfg", "denoise", "mask_preview") |
|
|
FUNCTION = "apply_cade2" |
|
|
CATEGORY = "MagicNodes" |
|
|
|
|
|
def apply_cade2(self, model, vae, positive, negative, latent, seed, steps, cfg, denoise, |
|
|
sampler_name, scheduler, noise_offset, iterations=1, steps_delta=0.0, |
|
|
cfg_delta=0.0, denoise_delta=0.0, apply_sharpen=False, |
|
|
apply_upscale=False, apply_ids=False, clip_clean=False, |
|
|
ids_strength=0.5, upscale_method="lanczos", scale_by=1.2, scale_delta=0.0, |
|
|
Sharpnes_strenght=0.300, threshold=0.03, latent_compare=False, accumulation="default", |
|
|
reference_clean=False, reference_image=None, clip_vision=None, ref_preview=224, ref_threshold=0.03, ref_cooldown=1, |
|
|
guidance_mode="RescaleCFG", rescale_multiplier=0.7, momentum_beta=0.0, cfg_curve=0.0, perp_damp=0.0, |
|
|
cwn_enable=True, alpha_c=1.0, alpha_u=1.0, agc_enable=True, agc_tau=2.8, |
|
|
use_nag=False, nag_scale=4.0, nag_tau=2.5, nag_alpha=0.25, |
|
|
aqclip_enable=False, aq_tile=32, aq_stride=16, aq_alpha=2.0, aq_ema_beta=0.8, aq_attn=False, |
|
|
use_zero_init=False, zero_init_steps=0, |
|
|
fdg_low=0.6, fdg_high=1.3, fdg_sigma=1.0, ze_res_zero_steps=2, |
|
|
ze_adaptive=False, ze_r_switch_hi=0.60, ze_r_switch_lo=0.45, |
|
|
fdg_low_adaptive=False, fdg_low_min=0.45, fdg_low_max=0.70, fdg_ema_beta=0.80, |
|
|
midfreq_enable=True, midfreq_gain=0.65, midfreq_sigma_lo=0.55, midfreq_sigma_hi=1.30, |
|
|
muse_blend=False, muse_blend_strength=0.5, |
|
|
eps_scale_enable=False, eps_scale=0.005, |
|
|
clipseg_enable=False, clipseg_text="", clipseg_preview=224, |
|
|
clipseg_threshold=0.40, clipseg_blur=7.0, clipseg_dilate=4, |
|
|
clipseg_gain=1.0, clipseg_blend="fuse", clipseg_ref_gate=False, clipseg_ref_threshold=0.03, |
|
|
polish_enable=False, polish_keep_low=0.4, polish_edge_lock=0.2, polish_sigma=1.0, |
|
|
polish_start_after=1, polish_keep_low_ramp=0.2, |
|
|
auto_save=False, save_prefix="ComfyUI", save_compress=1, |
|
|
kv_prune_enable=False, kv_keep=0.85, kv_min_tokens=128): |
|
|
|
|
|
try: |
|
|
global CURRENT_ONNX_MASK_BCHW |
|
|
CURRENT_ONNX_MASK_BCHW = None |
|
|
except Exception: |
|
|
pass |
|
|
|
|
|
image = safe_decode(vae, latent) |
|
|
|
|
|
tuned_steps, tuned_cfg, tuned_denoise = AdaptiveSamplerHelper().tune( |
|
|
image, steps, cfg, denoise) |
|
|
|
|
|
current_steps = tuned_steps |
|
|
current_cfg = tuned_cfg |
|
|
current_denoise = tuned_denoise |
|
|
|
|
|
try: |
|
|
current_latent = {"samples": latent["samples"].clone()} |
|
|
except Exception: |
|
|
current_latent = {"samples": latent["samples"]} |
|
|
current_scale = scale_by |
|
|
|
|
|
ref_embed = None |
|
|
if reference_clean and (clip_vision is not None) and (reference_image is not None): |
|
|
try: |
|
|
ref_embed = _encode_clip_image(reference_image, clip_vision, ref_preview) |
|
|
except Exception: |
|
|
ref_embed = None |
|
|
|
|
|
|
|
|
try: |
|
|
sa_patch.enable_crossattention_nag_patch(False) |
|
|
except Exception: |
|
|
pass |
|
|
prev_accum = getattr(sa_patch, "CURRENT_PV_ACCUM", None) |
|
|
sa_patch.CURRENT_PV_ACCUM = None if accumulation == "default" else accumulation |
|
|
|
|
|
try: |
|
|
sa_patch.enable_crossattention_nag_patch(bool(use_nag), float(nag_scale), float(nag_tau), float(nag_alpha)) |
|
|
except Exception: |
|
|
pass |
|
|
|
|
|
|
|
|
try: |
|
|
if hasattr(sa_patch, "enable_attention_entropy_capture"): |
|
|
sa_patch.enable_attention_entropy_capture(bool(aq_attn), max_tokens=1024, max_heads=4) |
|
|
except Exception: |
|
|
pass |
|
|
|
|
|
|
|
|
try: |
|
|
print("") |
|
|
except Exception: |
|
|
pass |
|
|
try: |
|
|
print("\x1b[32m==== Starting main job ====\x1b[0m") |
|
|
except Exception: |
|
|
pass |
|
|
|
|
|
|
|
|
try: |
|
|
if hasattr(sa_patch, "set_kv_prune"): |
|
|
sa_patch.set_kv_prune(bool(kv_prune_enable), float(kv_keep), int(kv_min_tokens)) |
|
|
except Exception: |
|
|
pass |
|
|
|
|
|
mask_last = None |
|
|
try: |
|
|
with torch.inference_mode(): |
|
|
__cade_noop = 0 |
|
|
|
|
|
|
|
|
try: |
|
|
CURRENT_ONNX_MASK_BCHW = None |
|
|
except Exception: |
|
|
pass |
|
|
pre_mask = None |
|
|
pre_area = 0.0 |
|
|
|
|
|
|
|
|
if bool(clipseg_enable) and isinstance(clipseg_text, str) and clipseg_text.strip() != "": |
|
|
try: |
|
|
cmask = _clipseg_build_mask(image, clipseg_text, int(clipseg_preview), float(clipseg_threshold), float(clipseg_blur), int(clipseg_dilate), float(clipseg_gain), None, None, float(clipseg_ref_threshold)) |
|
|
if cmask is not None: |
|
|
if pre_mask is None: |
|
|
pre_mask = cmask |
|
|
else: |
|
|
pre_mask, cmask = _align_mask_pair(pre_mask, cmask) |
|
|
if clipseg_blend == "replace": |
|
|
pre_mask = cmask |
|
|
elif clipseg_blend == "intersect": |
|
|
pre_mask = (pre_mask * cmask).clamp(0, 1) |
|
|
else: |
|
|
pre_mask = (1.0 - (1.0 - pre_mask) * (1.0 - cmask)).clamp(0, 1) |
|
|
except Exception: |
|
|
pass |
|
|
if pre_mask is not None: |
|
|
mask_last = pre_mask |
|
|
om = pre_mask.movedim(-1, 1) |
|
|
pre_area = float(om.mean().item()) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
try: |
|
|
clipseg_status = "on" if bool(clipseg_enable) and isinstance(clipseg_text, str) and clipseg_text.strip() != "" else "off" |
|
|
|
|
|
if False: |
|
|
print(f"[CADE2.5][preflight] clipseg={clipseg_status} device={'cpu' if _CLIPSEG_FORCE_CPU else _CLIPSEG_DEV} mask_area={pre_area:.4f}") |
|
|
except Exception: |
|
|
pass |
|
|
|
|
|
clipseg_enable = False |
|
|
|
|
|
depth_gate_cache = {"size": None, "mask": None} |
|
|
|
|
|
try: |
|
|
del cmask |
|
|
except Exception: |
|
|
pass |
|
|
try: |
|
|
del om |
|
|
except Exception: |
|
|
pass |
|
|
try: |
|
|
del pre_mask |
|
|
except Exception: |
|
|
pass |
|
|
try: |
|
|
del image |
|
|
except Exception: |
|
|
pass |
|
|
|
|
|
sampler_model = _wrap_model_with_guidance( |
|
|
model, guidance_mode, rescale_multiplier, momentum_beta, cfg_curve, perp_damp, |
|
|
use_zero_init=bool(use_zero_init), zero_init_steps=int(zero_init_steps), |
|
|
fdg_low=float(fdg_low), fdg_high=float(fdg_high), fdg_sigma=float(fdg_sigma), |
|
|
midfreq_enable=bool(midfreq_enable), midfreq_gain=float(midfreq_gain), midfreq_sigma_lo=float(midfreq_sigma_lo), midfreq_sigma_hi=float(midfreq_sigma_hi), |
|
|
ze_zero_steps=int(ze_res_zero_steps), |
|
|
ze_adaptive=bool(ze_adaptive), ze_r_switch_hi=float(ze_r_switch_hi), ze_r_switch_lo=float(ze_r_switch_lo), |
|
|
fdg_low_adaptive=bool(fdg_low_adaptive), fdg_low_min=float(fdg_low_min), fdg_low_max=float(fdg_low_max), fdg_ema_beta=float(fdg_ema_beta), |
|
|
use_local_mask=False, mask_inside=1.0, mask_outside=1.0, |
|
|
mahiro_plus_enable=bool(muse_blend), mahiro_plus_strength=float(muse_blend_strength), |
|
|
eps_scale_enable=bool(eps_scale_enable), eps_scale=float(eps_scale), |
|
|
cwn_enable=bool(cwn_enable), alpha_c=float(alpha_c), alpha_u=float(alpha_u), |
|
|
agc_enable=bool(agc_enable), agc_tau=float(agc_tau), |
|
|
nag_fb_enable=bool(use_nag), nag_fb_scale=float(nag_scale), nag_fb_tau=float(nag_tau), nag_fb_alpha=float(nag_alpha) |
|
|
) |
|
|
|
|
|
try: |
|
|
model_management.throw_exception_if_processing_interrupted() |
|
|
except Exception: |
|
|
|
|
|
raise |
|
|
|
|
|
for i in range(iterations): |
|
|
|
|
|
model_management.throw_exception_if_processing_interrupted() |
|
|
if i % 2 == 0: |
|
|
clear_gpu_and_ram_cache() |
|
|
|
|
|
|
|
|
try: |
|
|
if hasattr(sampler_model, "mg_guidance_reset"): |
|
|
sampler_model.mg_guidance_reset() |
|
|
except Exception: |
|
|
pass |
|
|
|
|
|
prev_samples = current_latent["samples"].clone().detach() |
|
|
|
|
|
iter_seed = seed + i * 7777 |
|
|
if noise_offset > 0.0: |
|
|
|
|
|
fade = 1.0 - (i / max(1, iterations)) |
|
|
try: |
|
|
gen = torch.Generator(device='cpu') |
|
|
except Exception: |
|
|
gen = torch.Generator() |
|
|
gen.manual_seed(int(iter_seed) & 0xFFFFFFFF) |
|
|
eps = torch.randn( |
|
|
size=current_latent["samples"].shape, |
|
|
dtype=current_latent["samples"].dtype, |
|
|
device='cpu', |
|
|
generator=gen, |
|
|
).to(current_latent["samples"].device) |
|
|
current_latent["samples"] = current_latent["samples"] + (noise_offset * fade) * eps |
|
|
try: |
|
|
del eps |
|
|
except Exception: |
|
|
pass |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
try: |
|
|
if bool(clipseg_enable) and isinstance(clipseg_text, str) and clipseg_text.strip() != "": |
|
|
img_prev2 = safe_decode(vae, current_latent) |
|
|
cmask = _clipseg_build_mask(img_prev2, clipseg_text, int(clipseg_preview), float(clipseg_threshold), float(clipseg_blur), int(clipseg_dilate), float(clipseg_gain), ref_embed if bool(clipseg_ref_gate) else None, clip_vision if bool(clipseg_ref_gate) else None, float(clipseg_ref_threshold)) |
|
|
if cmask is not None: |
|
|
if mask_last is None: |
|
|
fused = cmask |
|
|
else: |
|
|
mask_last, cmask = _align_mask_pair(mask_last, cmask) |
|
|
if clipseg_blend == "replace": |
|
|
fused = cmask |
|
|
elif clipseg_blend == "intersect": |
|
|
fused = (mask_last * cmask).clamp(0, 1) |
|
|
else: |
|
|
fused = (1.0 - (1.0 - mask_last) * (1.0 - cmask)).clamp(0, 1) |
|
|
mask_last = fused |
|
|
om = fused.movedim(-1, 1) |
|
|
area = float(om.mean().item()) |
|
|
if area > 0.005: |
|
|
damp = 1.0 - min(0.10, 0.02 + area * 0.08) |
|
|
current_denoise = max(0.10, current_denoise * damp) |
|
|
current_cfg = max(1.0, current_cfg * (1.0 - 0.005)) |
|
|
|
|
|
except Exception: |
|
|
pass |
|
|
|
|
|
try: |
|
|
del img_prev2 |
|
|
except Exception: |
|
|
pass |
|
|
try: |
|
|
del cmask |
|
|
except Exception: |
|
|
pass |
|
|
try: |
|
|
del fused |
|
|
except Exception: |
|
|
pass |
|
|
try: |
|
|
del om |
|
|
except Exception: |
|
|
pass |
|
|
|
|
|
|
|
|
sampler_model = sampler_model |
|
|
|
|
|
if str(scheduler) == "MGHybrid": |
|
|
try: |
|
|
|
|
|
sigmas = _build_hybrid_sigmas( |
|
|
sampler_model, int(current_steps), str(sampler_name), "hybrid", |
|
|
mix=0.5, denoise=float(current_denoise), jitter=0.01, seed=int(iter_seed), |
|
|
_debug=False, tail_smooth=0.15, auto_hybrid_tail=True, auto_tail_strength=0.4, |
|
|
) |
|
|
|
|
|
lat_img = current_latent["samples"] |
|
|
lat_img = _sample.fix_empty_latent_channels(sampler_model, lat_img) |
|
|
batch_inds = current_latent.get("batch_index", None) |
|
|
noise = _sample.prepare_noise(lat_img, int(iter_seed), batch_inds) |
|
|
noise_mask = current_latent.get("noise_mask", None) |
|
|
callback = _wrap_interruptible_callback(sampler_model, int(current_steps)) |
|
|
|
|
|
model_management.throw_exception_if_processing_interrupted() |
|
|
disable_pbar = not _utils.PROGRESS_BAR_ENABLED |
|
|
sampler_obj = _samplers.sampler_object(str(sampler_name)) |
|
|
samples = _sample.sample_custom( |
|
|
sampler_model, noise, float(current_cfg), sampler_obj, sigmas, |
|
|
positive, negative, lat_img, |
|
|
noise_mask=noise_mask, callback=callback, |
|
|
disable_pbar=disable_pbar, seed=int(iter_seed) |
|
|
) |
|
|
current_latent = {**current_latent} |
|
|
current_latent["samples"] = samples |
|
|
except Exception as e: |
|
|
|
|
|
try: |
|
|
model_management.throw_exception_if_processing_interrupted() |
|
|
except Exception: |
|
|
globals()["_MG_CANCEL_REQUESTED"] = False |
|
|
raise |
|
|
|
|
|
if isinstance(e, model_management.InterruptProcessingException) or globals().get("_MG_CANCEL_REQUESTED", False): |
|
|
globals()["_MG_CANCEL_REQUESTED"] = False |
|
|
raise |
|
|
|
|
|
print(f"[CADE2.5][MGHybrid] fallback to common_ksampler due to: {e}") |
|
|
current_latent, = _interruptible_ksampler( |
|
|
sampler_model, iter_seed, int(current_steps), current_cfg, sampler_name, _scheduler_names()[0], |
|
|
positive, negative, current_latent, denoise=current_denoise) |
|
|
else: |
|
|
current_latent, = _interruptible_ksampler( |
|
|
sampler_model, iter_seed, int(current_steps), current_cfg, sampler_name, scheduler, |
|
|
positive, negative, current_latent, denoise=current_denoise) |
|
|
|
|
|
|
|
|
model_management.throw_exception_if_processing_interrupted() |
|
|
|
|
|
try: |
|
|
del lat_img |
|
|
except Exception: |
|
|
pass |
|
|
try: |
|
|
del noise |
|
|
except Exception: |
|
|
pass |
|
|
try: |
|
|
del noise_mask |
|
|
except Exception: |
|
|
pass |
|
|
try: |
|
|
del callback |
|
|
except Exception: |
|
|
pass |
|
|
try: |
|
|
del sampler_obj |
|
|
except Exception: |
|
|
pass |
|
|
try: |
|
|
del sigmas |
|
|
except Exception: |
|
|
pass |
|
|
|
|
|
if bool(latent_compare): |
|
|
_cur = current_latent["samples"] |
|
|
_prev = prev_samples |
|
|
try: |
|
|
if _prev.device != _cur.device: |
|
|
_prev = _prev.to(_cur.device) |
|
|
if _prev.dtype != _cur.dtype: |
|
|
_prev = _prev.to(dtype=_cur.dtype) |
|
|
except Exception: |
|
|
pass |
|
|
latent_diff = _cur - _prev |
|
|
rms = torch.sqrt(torch.mean(latent_diff * latent_diff)) |
|
|
drift = float(rms.item()) |
|
|
if drift > float(threshold): |
|
|
overshoot = max(0.0, drift - float(threshold)) |
|
|
damp = 1.0 - min(0.15, overshoot * 2.0) |
|
|
current_denoise = max(0.20, current_denoise * damp) |
|
|
cfg_damp = 0.997 if damp > 0.9 else 0.99 |
|
|
current_cfg = max(1.0, current_cfg * cfg_damp) |
|
|
try: |
|
|
del prev_samples |
|
|
except Exception: |
|
|
pass |
|
|
|
|
|
|
|
|
try: |
|
|
if bool(aqclip_enable): |
|
|
if 'aq_state' not in locals(): |
|
|
aq_state = None |
|
|
H_override = None |
|
|
if bool(aq_attn) and hasattr(sa_patch, "get_attention_entropy_map"): |
|
|
try: |
|
|
Hm = sa_patch.get_attention_entropy_map(clear=False) |
|
|
if Hm is not None: |
|
|
H_override = F.interpolate(Hm, size=(current_latent["samples"].shape[-2], current_latent["samples"].shape[-1]), mode="bilinear", align_corners=False) |
|
|
except Exception: |
|
|
H_override = None |
|
|
z_new, aq_state = _aqclip_lite( |
|
|
current_latent["samples"], |
|
|
tile=int(aq_tile), stride=int(aq_stride), |
|
|
alpha=float(aq_alpha), ema_state=aq_state, ema_beta=float(aq_ema_beta), |
|
|
H_override=H_override, |
|
|
) |
|
|
current_latent["samples"] = z_new |
|
|
try: |
|
|
del H_override |
|
|
except Exception: |
|
|
pass |
|
|
try: |
|
|
del Hm |
|
|
except Exception: |
|
|
pass |
|
|
except Exception: |
|
|
pass |
|
|
|
|
|
image = safe_decode(vae, current_latent) |
|
|
|
|
|
model_management.throw_exception_if_processing_interrupted() |
|
|
|
|
|
|
|
|
if bool(polish_enable) and (i >= int(polish_start_after)): |
|
|
try: |
|
|
|
|
|
img = image |
|
|
ref = reference_image if (reference_image is not None) else img |
|
|
if ref.shape[1] != img.shape[1] or ref.shape[2] != img.shape[2]: |
|
|
|
|
|
ref_n = ref.movedim(-1, 1) |
|
|
ref_n = F.interpolate(ref_n, size=(img.shape[1], img.shape[2]), mode='bilinear', align_corners=False) |
|
|
ref = ref_n.movedim(1, -1) |
|
|
x = img.movedim(-1, 1) |
|
|
r = ref.movedim(-1, 1) |
|
|
|
|
|
rad = max(1, int(round(float(polish_sigma) * 2))) |
|
|
low_x = _gaussian_blur_nchw(x, sigma=float(polish_sigma), radius=rad) |
|
|
low_r = _gaussian_blur_nchw(r, sigma=float(polish_sigma), radius=rad) |
|
|
high_x = x - low_x |
|
|
|
|
|
|
|
|
try: |
|
|
denom = max(1, int(iterations) - int(polish_start_after)) |
|
|
t = max(0.0, min(1.0, (i - int(polish_start_after)) / denom)) |
|
|
except Exception: |
|
|
t = 1.0 |
|
|
a0 = float(polish_keep_low_ramp) |
|
|
at = float(polish_keep_low) |
|
|
a = a0 + (at - a0) * t |
|
|
low_mix = low_r * a + low_x * (1.0 - a) |
|
|
new = low_mix + high_x |
|
|
|
|
|
try: |
|
|
phase = (i + 1) / max(1, int(iterations)) |
|
|
|
|
|
ramp = max(0.0, min(1.0, (phase - 0.70) / 0.30)) |
|
|
if ramp > 0.0: |
|
|
|
|
|
micro = x - _gaussian_blur_nchw(x, sigma=0.6, radius=1) |
|
|
|
|
|
gray = x.mean(dim=1, keepdim=True) |
|
|
sobel_x = torch.tensor([[[-1,0,1],[-2,0,2],[-1,0,1]]], dtype=gray.dtype, device=gray.device).unsqueeze(1) |
|
|
sobel_y = torch.tensor([[[-1,-2,-1],[0,0,0],[1,2,1]]], dtype=gray.dtype, device=gray.device).unsqueeze(1) |
|
|
gx = F.conv2d(gray, sobel_x, padding=1) |
|
|
gy = F.conv2d(gray, sobel_y, padding=1) |
|
|
mag = torch.sqrt(gx*gx + gy*gy) |
|
|
m_edge = (mag - mag.amin()) / (mag.amax() - mag.amin() + 1e-8) |
|
|
g_edge = (1.0 - m_edge).clamp(0.0, 1.0).pow(0.65) |
|
|
|
|
|
try: |
|
|
sz = (int(img.shape[1]), int(img.shape[2])) |
|
|
if depth_gate_cache.get("size") != sz or depth_gate_cache.get("mask") is None: |
|
|
model_path = os.path.join(os.path.dirname(__file__), '..', 'depth-anything', 'depth_anything_v2_vitl.pth') |
|
|
dm = _cf_build_depth_map(img, res=512, model_path=model_path, hires_mode=True) |
|
|
depth_gate_cache = {"size": sz, "mask": dm} |
|
|
dm = depth_gate_cache.get("mask") |
|
|
if dm is not None: |
|
|
g_depth = (dm.movedim(-1, 1).clamp(0,1)) ** 1.35 |
|
|
else: |
|
|
g_depth = torch.ones_like(g_edge) |
|
|
except Exception: |
|
|
g_depth = torch.ones_like(g_edge) |
|
|
g = (g_edge * g_depth).clamp(0.0, 1.0) |
|
|
micro_boost = 0.018 * ramp |
|
|
new = new + micro_boost * (micro * g) |
|
|
except Exception: |
|
|
pass |
|
|
|
|
|
el = float(polish_edge_lock) |
|
|
if el > 1e-6: |
|
|
|
|
|
gray = x.mean(dim=1, keepdim=True) |
|
|
sobel_x = torch.tensor([[[-1,0,1],[-2,0,2],[-1,0,1]]], dtype=gray.dtype, device=gray.device).unsqueeze(1) |
|
|
sobel_y = torch.tensor([[[-1,-2,-1],[0,0,0],[1,2,1]]], dtype=gray.dtype, device=gray.device).unsqueeze(1) |
|
|
gx = F.conv2d(gray, sobel_x, padding=1) |
|
|
gy = F.conv2d(gray, sobel_y, padding=1) |
|
|
mag = torch.sqrt(gx*gx + gy*gy) |
|
|
m = (mag - mag.amin()) / (mag.amax() - mag.amin() + 1e-8) |
|
|
|
|
|
new = new * (1.0 - el*m) + (low_mix) * (el*m) |
|
|
img2 = new.movedim(1, -1).clamp(0,1) |
|
|
|
|
|
current_latent = {"samples": safe_encode(vae, img2)} |
|
|
image = img2 |
|
|
|
|
|
try: |
|
|
del x |
|
|
del r |
|
|
del low_x |
|
|
del low_r |
|
|
del high_x |
|
|
del low_mix |
|
|
del new |
|
|
del micro |
|
|
del gray |
|
|
del sobel_x |
|
|
del sobel_y |
|
|
del gx |
|
|
del gy |
|
|
del mag |
|
|
del m_edge |
|
|
del g_edge |
|
|
del g_depth |
|
|
del g |
|
|
del ref_n |
|
|
del ref |
|
|
del img |
|
|
except Exception: |
|
|
pass |
|
|
try: |
|
|
clear_gpu_and_ram_cache() |
|
|
except Exception: |
|
|
pass |
|
|
except Exception: |
|
|
pass |
|
|
|
|
|
|
|
|
|
|
|
if reference_clean and (ref_embed is not None) and (i % max(1, ref_cooldown) == 0): |
|
|
try: |
|
|
cur_embed = _encode_clip_image(image, clip_vision, ref_preview) |
|
|
dist = _clip_cosine_distance(cur_embed, ref_embed) |
|
|
if dist > ref_threshold: |
|
|
current_denoise = max(0.10, current_denoise * 0.9) |
|
|
current_cfg = max(1.0, current_cfg * 0.99) |
|
|
except Exception: |
|
|
pass |
|
|
|
|
|
if apply_upscale and current_scale != 1.0: |
|
|
current_latent, image = MagicUpscaleModule().process_upscale( |
|
|
current_latent, vae, upscale_method, current_scale) |
|
|
|
|
|
try: |
|
|
H, W = int(image.shape[1]), int(image.shape[2]) |
|
|
if max(H, W) > 1536: |
|
|
blur = _gaussian_blur(image, radius=1.0, sigma=0.8) |
|
|
hf = (image - blur).clamp(-1, 1) |
|
|
|
|
|
lum = (0.2126 * image[..., 0] + 0.7152 * image[..., 1] + 0.0722 * image[..., 2]) |
|
|
kx = torch.tensor([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]], device=lum.device, dtype=lum.dtype).view(1, 1, 3, 3) |
|
|
ky = torch.tensor([[-1, -2, -1], [0, 0, 0], [1, 2, 1]], device=lum.device, dtype=lum.dtype).view(1, 1, 3, 3) |
|
|
g = torch.sqrt(F.conv2d(lum.unsqueeze(1), kx, padding=1)**2 + F.conv2d(lum.unsqueeze(1), ky, padding=1)**2).squeeze(1) |
|
|
m = (g - g.amin()) / (g.amax() - g.amin() + 1e-8) |
|
|
g_edge = (1.0 - m).clamp(0,1).pow(0.5).unsqueeze(-1) |
|
|
|
|
|
try: |
|
|
sz = (H, W) |
|
|
if depth_gate_cache.get("size") != sz or depth_gate_cache.get("mask") is None: |
|
|
model_path = os.path.join(os.path.dirname(__file__), '..', 'depth-anything', 'depth_anything_v2_vitl.pth') |
|
|
dm = _cf_build_depth_map(image, res=512, model_path=model_path, hires_mode=True) |
|
|
depth_gate_cache = {"size": sz, "mask": dm} |
|
|
dm = depth_gate_cache.get("mask") |
|
|
if dm is not None: |
|
|
g_depth = dm.clamp(0,1) ** 1.2 |
|
|
else: |
|
|
g_depth = torch.ones_like(g_edge) |
|
|
except Exception: |
|
|
g_depth = torch.ones_like(g_edge) |
|
|
g_tot = (g_edge * g_depth).clamp(0,1) |
|
|
image = (image + 0.045 * hf * g_tot).clamp(0,1) |
|
|
except Exception: |
|
|
pass |
|
|
current_cfg = max(4.0, current_cfg * (1.0 / current_scale)) |
|
|
current_denoise = max(0.15, current_denoise * (1.0 / current_scale)) |
|
|
|
|
|
current_steps = max(1, current_steps - steps_delta) |
|
|
current_cfg = max(0.0, current_cfg - cfg_delta) |
|
|
current_denoise = max(0.0, current_denoise - denoise_delta) |
|
|
current_scale = max(1.0, current_scale - scale_delta) |
|
|
|
|
|
if apply_upscale and current_scale != 1.0 and max(image.shape[1:3]) > 1024: |
|
|
current_latent = {"samples": safe_encode(vae, image)} |
|
|
|
|
|
finally: |
|
|
|
|
|
try: |
|
|
sa_patch.enable_crossattention_nag_patch(False) |
|
|
except Exception: |
|
|
pass |
|
|
|
|
|
try: |
|
|
if hasattr(sa_patch, "enable_attention_entropy_capture"): |
|
|
sa_patch.enable_attention_entropy_capture(False) |
|
|
except Exception: |
|
|
pass |
|
|
try: |
|
|
sa_patch.CURRENT_PV_ACCUM = prev_accum |
|
|
except Exception: |
|
|
pass |
|
|
try: |
|
|
CURRENT_ONNX_MASK_BCHW = None |
|
|
except Exception: |
|
|
pass |
|
|
|
|
|
try: |
|
|
globals()["_MG_CANCEL_REQUESTED"] = False |
|
|
clear_gpu_and_ram_cache() |
|
|
except Exception: |
|
|
pass |
|
|
|
|
|
try: |
|
|
clear_gpu_and_ram_cache() |
|
|
except Exception: |
|
|
pass |
|
|
|
|
|
if apply_ids: |
|
|
image, = IntelligentDetailStabilizer().stabilize(image, ids_strength) |
|
|
|
|
|
if apply_sharpen: |
|
|
image, = _sharpen_image(image, 2, 1.0, Sharpnes_strenght) |
|
|
|
|
|
|
|
|
if mask_last is None: |
|
|
mask_last = torch.zeros((image.shape[0], image.shape[1], image.shape[2], 1), device=image.device, dtype=image.dtype) |
|
|
onnx_mask_img = mask_last.repeat(1, 1, 1, 3).clamp(0, 1) |
|
|
|
|
|
|
|
|
try: |
|
|
image = _despeckle_fireflies(image, thr=0.998, max_iso=4.0/9.0, grad_gate=0.15) |
|
|
except Exception: |
|
|
pass |
|
|
|
|
|
|
|
|
try: |
|
|
B, H, W, C = image.shape |
|
|
max_side = max(int(H), int(W)) |
|
|
cap = 4096 |
|
|
if max_side > cap: |
|
|
scale = float(cap) / float(max_side) |
|
|
nh = max(1, int(round(H * scale))) |
|
|
nw = max(1, int(round(W * scale))) |
|
|
x = image.movedim(-1, 1) |
|
|
x = F.interpolate(x, size=(nh, nw), mode='bilinear', align_corners=False) |
|
|
image = x.movedim(1, -1).clamp(0, 1).to(dtype=image.dtype) |
|
|
except Exception: |
|
|
pass |
|
|
|
|
|
|
|
|
try: |
|
|
if bool(auto_save): |
|
|
from comfy_api.latest._ui import ImageSaveHelper, FolderType |
|
|
_ = ImageSaveHelper.save_images( |
|
|
[image], filename_prefix=str(save_prefix), folder_type=FolderType.output, |
|
|
cls=ComfyAdaptiveDetailEnhancer25, compress_level=int(save_compress)) |
|
|
except Exception: |
|
|
pass |
|
|
|
|
|
|
|
|
try: |
|
|
if hasattr(sa_patch, "set_kv_prune"): |
|
|
sa_patch.set_kv_prune(False, 1.0, int(kv_min_tokens)) |
|
|
except Exception: |
|
|
pass |
|
|
|
|
|
return current_latent, image, int(current_steps), float(current_cfg), float(current_denoise), onnx_mask_img |
|
|
|
|
|
|
|
|
|
|
|
def _wrap_interruptible_callback(model, steps): |
|
|
base_cb = nodes.latent_preview.prepare_callback(model, int(steps)) |
|
|
def _cb(step, x0, x, total_steps): |
|
|
|
|
|
if model_management.processing_interrupted(): |
|
|
globals()["_MG_CANCEL_REQUESTED"] = True |
|
|
raise model_management.InterruptProcessingException() |
|
|
return base_cb(step, x0, x, total_steps) |
|
|
return _cb |
|
|
|
|
|
def _interruptible_ksampler(model, seed, steps, cfg, sampler_name, scheduler, |
|
|
positive, negative, latent, denoise=1.0): |
|
|
lat_img = _sample.fix_empty_latent_channels(model, latent["samples"]) |
|
|
batch_inds = latent.get("batch_index", None) |
|
|
noise = _sample.prepare_noise(lat_img, int(seed), batch_inds) |
|
|
noise_mask = latent.get("noise_mask", None) |
|
|
callback = _wrap_interruptible_callback(model, int(steps)) |
|
|
|
|
|
model_management.throw_exception_if_processing_interrupted() |
|
|
disable_pbar = not _utils.PROGRESS_BAR_ENABLED |
|
|
samples = _sample.sample( |
|
|
model, noise, int(steps), float(cfg), str(sampler_name), str(scheduler), |
|
|
positive, negative, lat_img, |
|
|
denoise=float(denoise), disable_noise=False, start_step=None, last_step=None, |
|
|
force_full_denoise=False, noise_mask=noise_mask, callback=callback, |
|
|
disable_pbar=disable_pbar, seed=int(seed) |
|
|
) |
|
|
out = {**latent} |
|
|
out["samples"] = samples |
|
|
return (out,) |
|
|
|