Retrain PPO model for FrozenLake-v1 v0
Browse files- .gitattributes +1 -0
- PPO-FrozenLake-v1.zip +3 -0
- PPO-FrozenLake-v1/_stable_baselines3_version +1 -0
- PPO-FrozenLake-v1/data +109 -0
- PPO-FrozenLake-v1/policy.optimizer.pth +3 -0
- PPO-FrozenLake-v1/policy.pth +3 -0
- PPO-FrozenLake-v1/pytorch_variables.pth +3 -0
- PPO-FrozenLake-v1/system_info.txt +7 -0
- README.md +28 -0
- config.json +1 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
PPO-FrozenLake-v1.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c9d646c110e268876753ce1eaa7e7fd050c072e7cc7afbc9db1f88159719d3fb
|
3 |
+
size 40534
|
PPO-FrozenLake-v1/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
PPO-FrozenLake-v1/data
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f6f7e96a5f0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6f7e96a680>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6f7e96a710>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6f7e96a7a0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f6f7e96a830>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f6f7e96a8c0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6f7e96a950>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f6f7e96a9e0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6f7e96aa70>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6f7e96ab00>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6f7e96ab90>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f6f7e9aede0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {
|
23 |
+
":type:": "<class 'dict'>",
|
24 |
+
":serialized:": "gASVbAAAAAAAAAB9lCiMDWFjdGl2YXRpb25fZm6UjBt0b3JjaC5ubi5tb2R1bGVzLmFjdGl2YXRpb26UjARTRUxVlJOUjAhuZXRfYXJjaJRdlH2UKIwCcGmUXZQoSwxLDEsMZYwCdmaUXZQoSwxLDEsMZXVhdS4=",
|
25 |
+
"activation_fn": "<class 'torch.nn.modules.activation.SELU'>",
|
26 |
+
"net_arch": [
|
27 |
+
{
|
28 |
+
"pi": [
|
29 |
+
12,
|
30 |
+
12,
|
31 |
+
12
|
32 |
+
],
|
33 |
+
"vf": [
|
34 |
+
12,
|
35 |
+
12,
|
36 |
+
12
|
37 |
+
]
|
38 |
+
}
|
39 |
+
]
|
40 |
+
},
|
41 |
+
"observation_space": {
|
42 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
43 |
+
":serialized:": "gASVjAAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLEIwFc3RhcnSUSwCMBl9zaGFwZZQpjAVkdHlwZZSMBW51bXB5lGgIk5SMAmk4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMCl9ucF9yYW5kb22UTnViLg==",
|
44 |
+
"n": 16,
|
45 |
+
"start": 0,
|
46 |
+
"_shape": [],
|
47 |
+
"dtype": "int64",
|
48 |
+
"_np_random": null
|
49 |
+
},
|
50 |
+
"action_space": {
|
51 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
52 |
+
":serialized:": "gASVjAAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwFc3RhcnSUSwCMBl9zaGFwZZQpjAVkdHlwZZSMBW51bXB5lGgIk5SMAmk4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMCl9ucF9yYW5kb22UTnViLg==",
|
53 |
+
"n": 4,
|
54 |
+
"start": 0,
|
55 |
+
"_shape": [],
|
56 |
+
"dtype": "int64",
|
57 |
+
"_np_random": null
|
58 |
+
},
|
59 |
+
"n_envs": 16,
|
60 |
+
"num_timesteps": 106496,
|
61 |
+
"_total_timesteps": 100000,
|
62 |
+
"_num_timesteps_at_start": 0,
|
63 |
+
"seed": null,
|
64 |
+
"action_noise": null,
|
65 |
+
"start_time": 1652278560.8929634,
|
66 |
+
"learning_rate": 0.0003,
|
67 |
+
"tensorboard_log": null,
|
68 |
+
"lr_schedule": {
|
69 |
+
":type:": "<class 'function'>",
|
70 |
+
":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL29wdC9jb25kYS9saWIvcHl0aG9uMy43L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL29wdC9jb25kYS9saWIvcHl0aG9uMy43L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
71 |
+
},
|
72 |
+
"_last_obs": {
|
73 |
+
":type:": "<class 'numpy.ndarray'>",
|
74 |
+
":serialized:": "gASVCAEAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYolDgAQAAAAAAAAACAAAAAAAAAAEAAAAAAAAAAkAAAAAAAAACQAAAAAAAAAIAAAAAAAAAAAAAAAAAAAADQAAAAAAAAAAAAAAAAAAAA0AAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAQAAAAAAAAACgAAAAAAAAAEAAAAAAAAAAAAAAAAAAAAlHSUYi4="
|
75 |
+
},
|
76 |
+
"_last_episode_starts": {
|
77 |
+
":type:": "<class 'numpy.ndarray'>",
|
78 |
+
":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="
|
79 |
+
},
|
80 |
+
"_last_original_obs": null,
|
81 |
+
"_episode_num": 0,
|
82 |
+
"use_sde": false,
|
83 |
+
"sde_sample_freq": -1,
|
84 |
+
"_current_progress_remaining": -0.0649599999999999,
|
85 |
+
"ep_info_buffer": {
|
86 |
+
":type:": "<class 'collections.deque'>",
|
87 |
+
":serialized:": "gASV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHP/AAAAAAAACMAWyUSwqMAXSUR0CQQ973wkPddX2UKGgGRz/wAAAAAAAAaAdLG2gIR0CQQ+SdvsJIdX2UKGgGRz/wAAAAAAAAaAdLGmgIR0CQQ9zv7WNFdX2UKGgGRz/wAAAAAAAAaAdLJGgIR0CQQ+wl0HQhdX2UKGgGRz/wAAAAAAAAaAdLMWgIR0CQQ+zdk8RudX2UKGgGRz/wAAAAAAAAaAdLHGgIR0CQQ/FRYRukdX2UKGgGRz/wAAAAAAAAaAdLFmgIR0CQQ/BiCrcTdX2UKGgGRwAAAAAAAAAAaAdLZGgIR0CQQ+qUNayKdX2UKGgGRz/wAAAAAAAAaAdLC2gIR0CQQ+6l+EytdX2UKGgGRz/wAAAAAAAAaAdLCWgIR0CQQ+2fTTfBdX2UKGgGRwAAAAAAAAAAaAdLFGgIR0CQQ/E12q1gdX2UKGgGRz/wAAAAAAAAaAdLFWgIR0CQQ/ujASFodX2UKGgGRwAAAAAAAAAAaAdLCmgIR0CQQ/Tho/RmdX2UKGgGRz/wAAAAAAAAaAdLMmgIR0CQQ+3w1BMSdX2UKGgGRwAAAAAAAAAAaAdLK2gIR0CQRAdkJ8fFdX2UKGgGRz/wAAAAAAAAaAdLCmgIR0CQQ/qZML4OdX2UKGgGRz/wAAAAAAAAaAdLDGgIR0CQRAOp84PxdX2UKGgGRz/wAAAAAAAAaAdLHGgIR0CQRAalUIcBdX2UKGgGRwAAAAAAAAAAaAdLD2gIR0CQRAU5uIhydX2UKGgGRz/wAAAAAAAAaAdLFmgIR0CQRBTBqKxcdX2UKGgGRz/wAAAAAAAAaAdLHmgIR0CQRAzSkTHsdX2UKGgGRz/wAAAAAAAAaAdLFWgIR0CQRBzru6VddX2UKGgGRz/wAAAAAAAAaAdLF2gIR0CQRBWkJrtWdX2UKGgGRwAAAAAAAAAAaAdLIGgIR0CQRB/vfCQ+dX2UKGgGRz/wAAAAAAAAaAdLKWgIR0CQRBsoDxLCdX2UKGgGRz/wAAAAAAAAaAdLCWgIR0CQRCs189fUdX2UKGgGRz/wAAAAAAAAaAdLJ2gIR0CQRCplBhQWdX2UKGgGRwAAAAAAAAAAaAdLC2gIR0CQRB5XU6PsdX2UKGgGRz/wAAAAAAAAaAdLRmgIR0CQRC21D0DmdX2UKGgGRz/wAAAAAAAAaAdLB2gIR0CQRCkbgjyGdX2UKGgGRz/wAAAAAAAAaAdLFmgIR0CQRDdK/VRUdX2UKGgGRz/wAAAAAAAAaAdLJ2gIR0CQRDJlJ6IFdX2UKGgGRwAAAAAAAAAAaAdLC2gIR0CQRDuBczIndX2UKGgGRwAAAAAAAAAAaAdLBWgIR0CQRDEOiFj/dX2UKGgGRz/wAAAAAAAAaAdLJmgIR0CQRDbOeJ53dX2UKGgGRwAAAAAAAAAAaAdLLmgIR0CQRDZzgdfcdX2UKGgGRz/wAAAAAAAAaAdLJmgIR0CQREKIBRyfdX2UKGgGRz/wAAAAAAAAaAdLG2gIR0CQREot+TePdX2UKGgGRz/wAAAAAAAAaAdLLmgIR0CQRE/9YOlPdX2UKGgGRz/wAAAAAAAAaAdLDmgIR0CQREahpQDWdX2UKGgGRz/wAAAAAAAAaAdLE2gIR0CQRE/pMYdidX2UKGgGRz/wAAAAAAAAaAdLIGgIR0CQRFzWwu/UdX2UKGgGRwAAAAAAAAAAaAdLKWgIR0CQRFWLgn+idX2UKGgGRz/wAAAAAAAAaAdLI2gIR0CQRFGD+R5kdX2UKGgGRwAAAAAAAAAAaAdLOmgIR0CQRF60IC2ddX2UKGgGRz/wAAAAAAAAaAdLEGgIR0CQRGiyY5T7dX2UKGgGRz/wAAAAAAAAaAdLDGgIR0CQRHFI/Z/TdX2UKGgGRz/wAAAAAAAAaAdLH2gIR0CQRH/c32mIdX2UKGgGRz/wAAAAAAAAaAdLMWgIR0CQRIda+vhZdX2UKGgGRz/wAAAAAAAAaAdLIGgIR0CQRIcYIjW1dX2UKGgGRz/wAAAAAAAAaAdLLGgIR0CQRI5IYm9hdX2UKGgGRz/wAAAAAAAAaAdLIWgIR0CQRISjQAuJdX2UKGgGRwAAAAAAAAAAaAdLZGgIR0CQRIrYoRZmdX2UKGgGRz/wAAAAAAAAaAdLV2gIR0CQRI1a4c3mdX2UKGgGRz/wAAAAAAAAaAdLN2gIR0CQRIwNLDhtdX2UKGgGRz/wAAAAAAAAaAdLIWgIR0CQRJxbSqlxdX2UKGgGRz/wAAAAAAAAaAdLQmgIR0CQRJ4zabnYdX2UKGgGRz/wAAAAAAAAaAdLLGgIR0CQRKGxUvPDdX2UKGgGRz/wAAAAAAAAaAdLH2gIR0CQRKH2AXl9dX2UKGgGRz/wAAAAAAAAaAdLPGgIR0CQRKAX2ugZdX2UKGgGRz/wAAAAAAAAaAdLOGgIR0CQRJ37DVH4dX2UKGgGRz/wAAAAAAAAaAdLDGgIR0CQRK8FINExdX2UKGgGRz/wAAAAAAAAaAdLT2gIR0CQRKjFAE+xdX2UKGgGRwAAAAAAAAAAaAdLEGgIR0CQRKRA8jiXdX2UKGgGRz/wAAAAAAAAaAdLFWgIR0CQRK+A3DNydX2UKGgGRz/wAAAAAAAAaAdLEWgIR0CQRKfiPyTZdX2UKGgGRwAAAAAAAAAAaAdLS2gIR0CQRKuTRplCdX2UKGgGRwAAAAAAAAAAaAdLCmgIR0CQRK2Dxsl+dX2UKGgGRz/wAAAAAAAAaAdLCmgIR0CQRL6tknTidX2UKGgGRz/wAAAAAAAAaAdLB2gIR0CQRLaF23a0dX2UKGgGRz/wAAAAAAAAaAdLGWgIR0CQRMUVBUrDdX2UKGgGRz/wAAAAAAAAaAdLDWgIR0CQRMO9WZJDdX2UKGgGRz/wAAAAAAAAaAdLGWgIR0CQRMiLEUCadX2UKGgGRz/wAAAAAAAAaAdLC2gIR0CQRM+xW1c/dX2UKGgGRz/wAAAAAAAAaAdLImgIR0CQRMD6WPcSdX2UKGgGRz/wAAAAAAAAaAdLDmgIR0CQRMNQj2SMdX2UKGgGRwAAAAAAAAAAaAdLGGgIR0CQRM0eU6gedX2UKGgGRz/wAAAAAAAAaAdLHGgIR0CQRM/GEPDpdX2UKGgGRz/wAAAAAAAAaAdLLmgIR0CQRMy2QXANdX2UKGgGRz/wAAAAAAAAaAdLJWgIR0CQRNmvnr6ddX2UKGgGRz/wAAAAAAAAaAdLJGgIR0CQRODHOryUdX2UKGgGRz/wAAAAAAAAaAdLQWgIR0CQRO3mFJxvdX2UKGgGRwAAAAAAAAAAaAdLLmgIR0CQROpzcRDkdX2UKGgGRwAAAAAAAAAAaAdLPWgIR0CQROe7L+xXdX2UKGgGRz/wAAAAAAAAaAdLD2gIR0CQROV9F4LUdX2UKGgGRz/wAAAAAAAAaAdLFWgIR0CQROW9lEqldX2UKGgGRz/wAAAAAAAAaAdLRmgIR0CQRO87ZFoddX2UKGgGRz/wAAAAAAAAaAdLIGgIR0CQRP0OEug6dX2UKGgGRz/wAAAAAAAAaAdLD2gIR0CQRQUbDMvAdX2UKGgGRz/wAAAAAAAAaAdLDmgIR0CQRQCgbp/xdX2UKGgGRz/wAAAAAAAAaAdLGGgIR0CQRQtT1kDqdX2UKGgGRz/wAAAAAAAAaAdLLmgIR0CQRRJUYKpldX2UKGgGRz/wAAAAAAAAaAdLMGgIR0CQRRSJj2BbdX2UKGgGRz/wAAAAAAAAaAdLIGgIR0CQRRG/vfCRdX2UKGgGRz/wAAAAAAAAaAdLE2gIR0CQRR6lLvkSdX2UKGgGRz/wAAAAAAAAaAdLHGgIR0CQRR+H8CPqdX2UKGgGRz/wAAAAAAAAaAdLMmgIR0CQRRYsd1dPdX2UKGgGRwAAAAAAAAAAaAdLDGgIR0CQRSBiTdLydX2UKGgGRwAAAAAAAAAAaAdLNGgIR0CQRShpQDV6dX2UKGgGRwAAAAAAAAAAaAdLPWgIR0CQRR127nPndWUu"
|
88 |
+
},
|
89 |
+
"ep_success_buffer": {
|
90 |
+
":type:": "<class 'collections.deque'>",
|
91 |
+
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
92 |
+
},
|
93 |
+
"_n_updates": 200,
|
94 |
+
"n_steps": 512,
|
95 |
+
"gamma": 0.97,
|
96 |
+
"gae_lambda": 0.98,
|
97 |
+
"ent_coef": 0.01,
|
98 |
+
"vf_coef": 0.5,
|
99 |
+
"max_grad_norm": 0.5,
|
100 |
+
"batch_size": 32,
|
101 |
+
"n_epochs": 4,
|
102 |
+
"clip_range": {
|
103 |
+
":type:": "<class 'function'>",
|
104 |
+
":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL29wdC9jb25kYS9saWIvcHl0aG9uMy43L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL29wdC9jb25kYS9saWIvcHl0aG9uMy43L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
105 |
+
},
|
106 |
+
"clip_range_vf": null,
|
107 |
+
"normalize_advantage": true,
|
108 |
+
"target_kl": null
|
109 |
+
}
|
PPO-FrozenLake-v1/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:49f31674be06be8dfca70c1eaab6d4c413590699b15cbf3f16ae5c636db4ae6d
|
3 |
+
size 16965
|
PPO-FrozenLake-v1/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0825af843602f21aa310dc9ef1715468b6f023835dff8b060a8e0d3d273a4096
|
3 |
+
size 9589
|
PPO-FrozenLake-v1/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
PPO-FrozenLake-v1/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.10.107+-x86_64-with-debian-bullseye-sid #1 SMP Sun Apr 24 15:04:08 UTC 2022
|
2 |
+
Python: 3.7.12
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.9.1
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.23.1
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- FrozenLake-v1
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 0.80 +/- 0.40
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: FrozenLake-v1
|
20 |
+
type: FrozenLake-v1
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **FrozenLake-v1**
|
24 |
+
This is a trained model of a **PPO** agent playing **FrozenLake-v1** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6f7e96a5f0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6f7e96a680>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6f7e96a710>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6f7e96a7a0>", "_build": "<function ActorCriticPolicy._build at 0x7f6f7e96a830>", "forward": "<function ActorCriticPolicy.forward at 0x7f6f7e96a8c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6f7e96a950>", "_predict": "<function ActorCriticPolicy._predict at 0x7f6f7e96a9e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6f7e96aa70>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6f7e96ab00>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6f7e96ab90>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f6f7e9aede0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gASVbAAAAAAAAAB9lCiMDWFjdGl2YXRpb25fZm6UjBt0b3JjaC5ubi5tb2R1bGVzLmFjdGl2YXRpb26UjARTRUxVlJOUjAhuZXRfYXJjaJRdlH2UKIwCcGmUXZQoSwxLDEsMZYwCdmaUXZQoSwxLDEsMZXVhdS4=", "activation_fn": "<class 'torch.nn.modules.activation.SELU'>", "net_arch": [{"pi": [12, 12, 12], "vf": [12, 12, 12]}]}, "observation_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gASVjAAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLEIwFc3RhcnSUSwCMBl9zaGFwZZQpjAVkdHlwZZSMBW51bXB5lGgIk5SMAmk4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMCl9ucF9yYW5kb22UTnViLg==", "n": 16, "start": 0, "_shape": [], "dtype": "int64", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gASVjAAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwFc3RhcnSUSwCMBl9zaGFwZZQpjAVkdHlwZZSMBW51bXB5lGgIk5SMAmk4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMCl9ucF9yYW5kb22UTnViLg==", "n": 4, "start": 0, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 106496, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652278560.8929634, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL29wdC9jb25kYS9saWIvcHl0aG9uMy43L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL29wdC9jb25kYS9saWIvcHl0aG9uMy43L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVCAEAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYolDgAQAAAAAAAAACAAAAAAAAAAEAAAAAAAAAAkAAAAAAAAACQAAAAAAAAAIAAAAAAAAAAAAAAAAAAAADQAAAAAAAAAAAAAAAAAAAA0AAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAQAAAAAAAAACgAAAAAAAAAEAAAAAAAAAAAAAAAAAAAAlHSUYi4="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0649599999999999, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHP/AAAAAAAACMAWyUSwqMAXSUR0CQQ973wkPddX2UKGgGRz/wAAAAAAAAaAdLG2gIR0CQQ+SdvsJIdX2UKGgGRz/wAAAAAAAAaAdLGmgIR0CQQ9zv7WNFdX2UKGgGRz/wAAAAAAAAaAdLJGgIR0CQQ+wl0HQhdX2UKGgGRz/wAAAAAAAAaAdLMWgIR0CQQ+zdk8RudX2UKGgGRz/wAAAAAAAAaAdLHGgIR0CQQ/FRYRukdX2UKGgGRz/wAAAAAAAAaAdLFmgIR0CQQ/BiCrcTdX2UKGgGRwAAAAAAAAAAaAdLZGgIR0CQQ+qUNayKdX2UKGgGRz/wAAAAAAAAaAdLC2gIR0CQQ+6l+EytdX2UKGgGRz/wAAAAAAAAaAdLCWgIR0CQQ+2fTTfBdX2UKGgGRwAAAAAAAAAAaAdLFGgIR0CQQ/E12q1gdX2UKGgGRz/wAAAAAAAAaAdLFWgIR0CQQ/ujASFodX2UKGgGRwAAAAAAAAAAaAdLCmgIR0CQQ/Tho/RmdX2UKGgGRz/wAAAAAAAAaAdLMmgIR0CQQ+3w1BMSdX2UKGgGRwAAAAAAAAAAaAdLK2gIR0CQRAdkJ8fFdX2UKGgGRz/wAAAAAAAAaAdLCmgIR0CQQ/qZML4OdX2UKGgGRz/wAAAAAAAAaAdLDGgIR0CQRAOp84PxdX2UKGgGRz/wAAAAAAAAaAdLHGgIR0CQRAalUIcBdX2UKGgGRwAAAAAAAAAAaAdLD2gIR0CQRAU5uIhydX2UKGgGRz/wAAAAAAAAaAdLFmgIR0CQRBTBqKxcdX2UKGgGRz/wAAAAAAAAaAdLHmgIR0CQRAzSkTHsdX2UKGgGRz/wAAAAAAAAaAdLFWgIR0CQRBzru6VddX2UKGgGRz/wAAAAAAAAaAdLF2gIR0CQRBWkJrtWdX2UKGgGRwAAAAAAAAAAaAdLIGgIR0CQRB/vfCQ+dX2UKGgGRz/wAAAAAAAAaAdLKWgIR0CQRBsoDxLCdX2UKGgGRz/wAAAAAAAAaAdLCWgIR0CQRCs189fUdX2UKGgGRz/wAAAAAAAAaAdLJ2gIR0CQRCplBhQWdX2UKGgGRwAAAAAAAAAAaAdLC2gIR0CQRB5XU6PsdX2UKGgGRz/wAAAAAAAAaAdLRmgIR0CQRC21D0DmdX2UKGgGRz/wAAAAAAAAaAdLB2gIR0CQRCkbgjyGdX2UKGgGRz/wAAAAAAAAaAdLFmgIR0CQRDdK/VRUdX2UKGgGRz/wAAAAAAAAaAdLJ2gIR0CQRDJlJ6IFdX2UKGgGRwAAAAAAAAAAaAdLC2gIR0CQRDuBczIndX2UKGgGRwAAAAAAAAAAaAdLBWgIR0CQRDEOiFj/dX2UKGgGRz/wAAAAAAAAaAdLJmgIR0CQRDbOeJ53dX2UKGgGRwAAAAAAAAAAaAdLLmgIR0CQRDZzgdfcdX2UKGgGRz/wAAAAAAAAaAdLJmgIR0CQREKIBRyfdX2UKGgGRz/wAAAAAAAAaAdLG2gIR0CQREot+TePdX2UKGgGRz/wAAAAAAAAaAdLLmgIR0CQRE/9YOlPdX2UKGgGRz/wAAAAAAAAaAdLDmgIR0CQREahpQDWdX2UKGgGRz/wAAAAAAAAaAdLE2gIR0CQRE/pMYdidX2UKGgGRz/wAAAAAAAAaAdLIGgIR0CQRFzWwu/UdX2UKGgGRwAAAAAAAAAAaAdLKWgIR0CQRFWLgn+idX2UKGgGRz/wAAAAAAAAaAdLI2gIR0CQRFGD+R5kdX2UKGgGRwAAAAAAAAAAaAdLOmgIR0CQRF60IC2ddX2UKGgGRz/wAAAAAAAAaAdLEGgIR0CQRGiyY5T7dX2UKGgGRz/wAAAAAAAAaAdLDGgIR0CQRHFI/Z/TdX2UKGgGRz/wAAAAAAAAaAdLH2gIR0CQRH/c32mIdX2UKGgGRz/wAAAAAAAAaAdLMWgIR0CQRIda+vhZdX2UKGgGRz/wAAAAAAAAaAdLIGgIR0CQRIcYIjW1dX2UKGgGRz/wAAAAAAAAaAdLLGgIR0CQRI5IYm9hdX2UKGgGRz/wAAAAAAAAaAdLIWgIR0CQRISjQAuJdX2UKGgGRwAAAAAAAAAAaAdLZGgIR0CQRIrYoRZmdX2UKGgGRz/wAAAAAAAAaAdLV2gIR0CQRI1a4c3mdX2UKGgGRz/wAAAAAAAAaAdLN2gIR0CQRIwNLDhtdX2UKGgGRz/wAAAAAAAAaAdLIWgIR0CQRJxbSqlxdX2UKGgGRz/wAAAAAAAAaAdLQmgIR0CQRJ4zabnYdX2UKGgGRz/wAAAAAAAAaAdLLGgIR0CQRKGxUvPDdX2UKGgGRz/wAAAAAAAAaAdLH2gIR0CQRKH2AXl9dX2UKGgGRz/wAAAAAAAAaAdLPGgIR0CQRKAX2ugZdX2UKGgGRz/wAAAAAAAAaAdLOGgIR0CQRJ37DVH4dX2UKGgGRz/wAAAAAAAAaAdLDGgIR0CQRK8FINExdX2UKGgGRz/wAAAAAAAAaAdLT2gIR0CQRKjFAE+xdX2UKGgGRwAAAAAAAAAAaAdLEGgIR0CQRKRA8jiXdX2UKGgGRz/wAAAAAAAAaAdLFWgIR0CQRK+A3DNydX2UKGgGRz/wAAAAAAAAaAdLEWgIR0CQRKfiPyTZdX2UKGgGRwAAAAAAAAAAaAdLS2gIR0CQRKuTRplCdX2UKGgGRwAAAAAAAAAAaAdLCmgIR0CQRK2Dxsl+dX2UKGgGRz/wAAAAAAAAaAdLCmgIR0CQRL6tknTidX2UKGgGRz/wAAAAAAAAaAdLB2gIR0CQRLaF23a0dX2UKGgGRz/wAAAAAAAAaAdLGWgIR0CQRMUVBUrDdX2UKGgGRz/wAAAAAAAAaAdLDWgIR0CQRMO9WZJDdX2UKGgGRz/wAAAAAAAAaAdLGWgIR0CQRMiLEUCadX2UKGgGRz/wAAAAAAAAaAdLC2gIR0CQRM+xW1c/dX2UKGgGRz/wAAAAAAAAaAdLImgIR0CQRMD6WPcSdX2UKGgGRz/wAAAAAAAAaAdLDmgIR0CQRMNQj2SMdX2UKGgGRwAAAAAAAAAAaAdLGGgIR0CQRM0eU6gedX2UKGgGRz/wAAAAAAAAaAdLHGgIR0CQRM/GEPDpdX2UKGgGRz/wAAAAAAAAaAdLLmgIR0CQRMy2QXANdX2UKGgGRz/wAAAAAAAAaAdLJWgIR0CQRNmvnr6ddX2UKGgGRz/wAAAAAAAAaAdLJGgIR0CQRODHOryUdX2UKGgGRz/wAAAAAAAAaAdLQWgIR0CQRO3mFJxvdX2UKGgGRwAAAAAAAAAAaAdLLmgIR0CQROpzcRDkdX2UKGgGRwAAAAAAAAAAaAdLPWgIR0CQROe7L+xXdX2UKGgGRz/wAAAAAAAAaAdLD2gIR0CQROV9F4LUdX2UKGgGRz/wAAAAAAAAaAdLFWgIR0CQROW9lEqldX2UKGgGRz/wAAAAAAAAaAdLRmgIR0CQRO87ZFoddX2UKGgGRz/wAAAAAAAAaAdLIGgIR0CQRP0OEug6dX2UKGgGRz/wAAAAAAAAaAdLD2gIR0CQRQUbDMvAdX2UKGgGRz/wAAAAAAAAaAdLDmgIR0CQRQCgbp/xdX2UKGgGRz/wAAAAAAAAaAdLGGgIR0CQRQtT1kDqdX2UKGgGRz/wAAAAAAAAaAdLLmgIR0CQRRJUYKpldX2UKGgGRz/wAAAAAAAAaAdLMGgIR0CQRRSJj2BbdX2UKGgGRz/wAAAAAAAAaAdLIGgIR0CQRRG/vfCRdX2UKGgGRz/wAAAAAAAAaAdLE2gIR0CQRR6lLvkSdX2UKGgGRz/wAAAAAAAAaAdLHGgIR0CQRR+H8CPqdX2UKGgGRz/wAAAAAAAAaAdLMmgIR0CQRRYsd1dPdX2UKGgGRwAAAAAAAAAAaAdLDGgIR0CQRSBiTdLydX2UKGgGRwAAAAAAAAAAaAdLNGgIR0CQRShpQDV6dX2UKGgGRwAAAAAAAAAAaAdLPWgIR0CQRR127nPndWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 200, "n_steps": 512, "gamma": 0.97, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 32, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL29wdC9jb25kYS9saWIvcHl0aG9uMy43L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL29wdC9jb25kYS9saWIvcHl0aG9uMy43L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.107+-x86_64-with-debian-bullseye-sid #1 SMP Sun Apr 24 15:04:08 UTC 2022", "Python": "3.7.12", "Stable-Baselines3": "1.5.0", "PyTorch": "1.9.1", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.23.1"}}
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 0.8, "std_reward": 0.4, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-11T14:19:42.053572"}
|