DBusAI commited on
Commit
cac1da8
1 Parent(s): a135b5a

Retrain PPO model for BipedalWalker-v3 v0

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
PPO-BipedalWalker-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:85da9b6bcb8473e8b6ba9fb3639cb1aa281c4ef26662eb0b2276977345e4fa25
3
+ size 170632
PPO-BipedalWalker-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.0
PPO-BipedalWalker-v3/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fbc1a8f2680>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fbc1a8f2710>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fbc1a8f27a0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fbc1a8f2830>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fbc1a8f28c0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fbc1a8f2950>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fbc1a8f29e0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fbc1a8f2a70>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fbc1a8f2b00>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fbc1a8f2b90>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fbc1a8f2c20>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7fbc1a945390>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVPwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLGIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWYAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UaApLGIWUjAFDlHSUUpSMBGhpZ2iUaBIolmAAAAAAAAAAAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgKSxiFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLGIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoIUsYhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 24
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.box.Box'>",
38
+ ":serialized:": "gAWVdwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/lGgKSwSFlIwBQ5R0lFKUjARoaWdolGgSKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaApLBIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYEAAAAAAAAAAEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYEAAAAAAAAAAEBAQGUaCFLBIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
39
+ "dtype": "float32",
40
+ "_shape": [
41
+ 4
42
+ ],
43
+ "low": "[-1. -1. -1. -1.]",
44
+ "high": "[1. 1. 1. 1.]",
45
+ "bounded_below": "[ True True True True]",
46
+ "bounded_above": "[ True True True True]",
47
+ "_np_random": null
48
+ },
49
+ "n_envs": 6,
50
+ "num_timesteps": 307200,
51
+ "_total_timesteps": 300000,
52
+ "_num_timesteps_at_start": 0,
53
+ "seed": null,
54
+ "action_noise": null,
55
+ "start_time": 1652448501.4214036,
56
+ "learning_rate": 0.0003,
57
+ "tensorboard_log": null,
58
+ "lr_schedule": {
59
+ ":type:": "<class 'function'>",
60
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL29wdC9jb25kYS9saWIvcHl0aG9uMy43L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL29wdC9jb25kYS9saWIvcHl0aG9uMy43L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
61
+ },
62
+ "_last_obs": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVtQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZAAgAAAAAAANzO9j4jYD89lM59Pq5bND3l2lG/hJRRv0xnVz8AAIA/AAAAAG+7kD8AAAAAzi9OP6udJL8AAAAARLzePtFD4T4OJuk+Zlz3PrDvBj/VNBg//SgzP57SXz8AAIA/AACAP8M62b54hRu8CH1HPvGYIrzmGNY91MIGv+z4Hr8AAAAAAAAAAKXKez8QLkO+MKMYv3UyojwAAIA/lM21Psa+tT5jRbk+SAvBPngqzz4+/OU+/k4GP2X+KD8Qnnc/AACAP/9nXTyWzke9qPQNP8jMWzxHrTK9DKFMv/Q+xb4Hr0A/AAAAAK3Zlj8BAIA/FF8gP/3/f78AAAAAzc6cPvVYoD44pqg+eTK2Pn83yz4FJus+OdIMPyT+MD+yMGc/AACAP4Hkjj7sN+I8+WTDPujRM7yPfm6+AwCAP+wm/b4AAIC/AACAPzODjz8AAAAAGIuAvggfG74AAAAAPziYPsrymT4TVp8+jgypPrfbtz7+m80+IRjwPt/nGT/Iqlk/AACAPyl52TsZqY+6xNGKPiMh9T2Vmis+xgAcv3iNoL4LbBM/AACAP5+ojD8AAACwQKhAvQEAgD8AAAAAy2G+Pjj2wD7ohsU+pkDOPnCR3D44o/g+JqcRPwy2OT8AAIA/AACAP83ulj4MR7G8LVzxPvTzprv2eKy+XKIzv1BRyb4EAw4/AAAAAJ1JkT+5zwM/IKtvPQIAgD8AAAAA4yqYPjM4mT4TGp0+Y3SlPsgVtD4vyMs+ycTtPhs6Dj/o+Ts/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLBksYhpSMAUOUdJRSlC4="
65
+ },
66
+ "_last_episode_starts": {
67
+ ":type:": "<class 'numpy.ndarray'>",
68
+ ":serialized:": "gAWVeQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYGAAAAAAAAAAAAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBoWUjAFDlHSUUpQu"
69
+ },
70
+ "_last_original_obs": null,
71
+ "_episode_num": 0,
72
+ "use_sde": false,
73
+ "sde_sample_freq": -1,
74
+ "_current_progress_remaining": -0.02400000000000002,
75
+ "ep_info_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMITpgwmlV6ckCUhpRSlIwBbJRNVQSMAXSUR0CeqbBVuJk5dX2UKGgGaAloD0MIGf7TDVR6ckCUhpRSlGgVTUoEaBZHQJ6qC6g/Tsp1fZQoaAZoCWgPQwhXl1MCYnlyQJSGlFKUaBVNOQRoFkdAnq0VinYQKHV9lChoBmgJaA9DCLlPjgIEi3JAlIaUUpRoFU0nBGgWR0Ce2ryo4uK5dX2UKGgGaAloD0MIeNFXkGahckCUhpRSlGgVTSEEaBZHQJ7bDGn4wh51fZQoaAZoCWgPQwgpzHuc6WhyQJSGlFKUaBVNVwRoFkdAnt1b8rI5pHV9lChoBmgJaA9DCH4ZjBGJhnJAlIaUUpRoFU0vBGgWR0Ce3jK3d9DydX2UKGgGaAloD0MIYOXQIluYckCUhpRSlGgVTTAEaBZHQJ7euU6gdwN1fZQoaAZoCWgPQwhCeR9Hc3ByQJSGlFKUaBVNPARoFkdAnuH3qzJIUnV9lChoBmgJaA9DCDcz+tHwlXJAlIaUUpRoFU0uBGgWR0Ce6y/jsD4hdX2UKGgGaAloD0MI+vIC7GNlckCUhpRSlGgVTWMEaBZHQJ7rqfzz3AV1fZQoaAZoCWgPQwiH3XcMj4xyQJSGlFKUaBVNMwRoFkdAnu2v2K2rn3V9lChoBmgJaA9DCIzc09VddXJAlIaUUpRoFU1gBGgWR0Ce7c1UEPlNdX2UKGgGaAloD0MIr3d/vFeZckCUhpRSlGgVTT0EaBZHQJ7uM1LrX191fZQoaAZoCWgPQwgLe9rhLz9yQJSGlFKUaBVNjARoFkdAnxdhF/hESnV9lChoBmgJaA9DCKzmOSLfd0lAlIaUUpRoFU1tAmgWR0CfGPdYW+GodX2UKGgGaAloD0MIwlCHFS6AckCUhpRSlGgVTTAEaBZHQJ8gCOwPiDN1fZQoaAZoCWgPQwhVwhN6PXtyQJSGlFKUaBVNOARoFkdAnyNEnLJSznV9lChoBmgJaA9DCBXFq6xtcnJAlIaUUpRoFU0/BGgWR0CfI5VrylN2dX2UKGgGaAloD0MIvFtZovN5ckCUhpRSlGgVTTYEaBZHQJ8j+UGFBY51fZQoaAZoCWgPQwgY0At3LpBXwJSGlFKUaBVLgWgWR0CfJdLs8gZCdX2UKGgGaAloD0MIvr9BezWNckCUhpRSlGgVTSMEaBZHQJ8oOoGY8dR1fZQoaAZoCWgPQwgShZZ1P4NyQJSGlFKUaBVNIwRoFkdAnym2LDQ7cXV9lChoBmgJaA9DCPuvc9NmJVJAlIaUUpRoFU3UAmgWR0CfMBMYMvytdX2UKGgGaAloD0MIJ94BnjSWckCUhpRSlGgVTSwEaBZHQJ8wlfBvaUR1fZQoaAZoCWgPQwgzGvm8Io5yQJSGlFKUaBVNLARoFkdAnzLjnFHavnV9lChoBmgJaA9DCPImv0WnYnJAlIaUUpRoFU1HBGgWR0CfMxrKeTV2dX2UKGgGaAloD0MIgehJmZSGckCUhpRSlGgVTSMEaBZHQJ9bsg/1QIl1fZQoaAZoCWgPQwhKRPgXwWByQJSGlFKUaBVNZARoFkdAn14ePNmlInV9lChoBmgJaA9DCLBx/bv+W3JAlIaUUpRoFU07BGgWR0CfZMQv6CUYdX2UKGgGaAloD0MI96sA3y1tckCUhpRSlGgVTTUEaBZHQJ9lKI68xsV1fZQoaAZoCWgPQwj5Tsx68YNyQJSGlFKUaBVNOgRoFkdAn2eVb7j1f3V9lChoBmgJaA9DCMQlx53Sh3JAlIaUUpRoFU0yBGgWR0CfZ6+aBqbjdX2UKGgGaAloD0MIPUM4ZlmPckCUhpRSlGgVTTEEaBZHQJ9rnP7el9B1fZQoaAZoCWgPQwhbYfpeQ1pyQJSGlFKUaBVNVgRoFkdAn26CZWq95HV9lChoBmgJaA9DCL/Rjht+JVXAlIaUUpRoFUuWaBZHQJ9wsPlMh5h1fZQoaAZoCWgPQwhxx5v8loNyQJSGlFKUaBVNIARoFkdAn3QZwsGxEHV9lChoBmgJaA9DCDs0LEbdgXJAlIaUUpRoFU0+BGgWR0CfdCxMFlkIdX2UKGgGaAloD0MIEMzR4/eGckCUhpRSlGgVTS8EaBZHQJ92vAaef7J1fZQoaAZoCWgPQwjUZMbbin1yQJSGlFKUaBVNNQRoFkdAn3bra/RE4XV9lChoBmgJaA9DCE7v4v14lHJAlIaUUpRoFU0eBGgWR0Cfny5jH4oJdX2UKGgGaAloD0MImBb1SS5PckCUhpRSlGgVTXwEaBZHQJ+nJwxWT5h1fZQoaAZoCWgPQwgPuRluQI1yQJSGlFKUaBVNKgRoFkdAn6mLo8p1BHV9lChoBmgJaA9DCFd6bTZWdXJAlIaUUpRoFU1ABGgWR0CfqdwA2hqTdX2UKGgGaAloD0MIoiWPpyWTckCUhpRSlGgVTTAEaBZHQJ+sYUh3aBZ1fZQoaAZoCWgPQwhaZDvfz2tyQJSGlFKUaBVNSARoFkdAn6yaQq7ROXV9lChoBmgJaA9DCNPbn4vGd3JAlIaUUpRoFU08BGgWR0CfsEH3UQTVdX2UKGgGaAloD0MIO99PjdeKckCUhpRSlGgVTS0EaBZHQJ+2iVhTfix1fZQoaAZoCWgPQwiWBRN/VIdyQJSGlFKUaBVNMwRoFkdAn7nXyEtdzHV9lChoBmgJaA9DCNWSjnIwenJAlIaUUpRoFU1RBGgWR0CfuicmShaldX2UKGgGaAloD0MICg+aXfeHckCUhpRSlGgVTTkEaBZHQJ+8065oXbd1fZQoaAZoCWgPQwiWeEDZ1JRyQJSGlFKUaBVNLgRoFkdAn7zeH31zyXV9lChoBmgJaA9DCJavy/Cf6E7AlIaUUpRoFUveaBZHQJ/kKqwQlKN1fZQoaAZoCWgPQwg9LNSa5rRyQJSGlFKUaBVNFgRoFkdAn+Rkcjqv/3V9lChoBmgJaA9DCGTnbWx2gEFAlIaUUpRoFU07AmgWR0Cf6gHsTnJUdX2UKGgGaAloD0MItwn3yjyFckCUhpRSlGgVTUUEaBZHQJ/sFo4+8oR1fZQoaAZoCWgPQwjpZKn1/qByQJSGlFKUaBVNKQRoFkdAn+5Tfm9xqHV9lChoBmgJaA9DCEwW9x8ZmnJAlIaUUpRoFU1KBGgWR0Cf7vjBVMmGdX2UKGgGaAloD0MIm+jzUUbAT8CUhpRSlGgVS+NoFkdAn/GLIYFaCHV9lChoBmgJaA9DCMEcPX5vnHJAlIaUUpRoFU0vBGgWR0Cf9Fvv0AcUdX2UKGgGaAloD0MIR6ta0tGQckCUhpRSlGgVTTgEaBZHQJ/0s5hjOLR1fZQoaAZoCWgPQwjbp+MxA7NkQJSGlFKUaBVNQQRoFkdAn/nIZ/CqInV9lChoBmgJaA9DCNB+pIhMnHJAlIaUUpRoFU0/BGgWR0Cf+9MIu5BkdX2UKGgGaAloD0MIO+XRjTBsckCUhpRSlGgVTUwEaBZHQJ/+6Ii1Rch1fZQoaAZoCWgPQwhYO4pzFIByQJSGlFKUaBVNQwRoFkdAoBNMV8CxNnV9lChoBmgJaA9DCHWtvU+VZnJAlIaUUpRoFU1lBGgWR0CgFZXA/LTydX2UKGgGaAloD0MIl3DoLZ5lckCUhpRSlGgVTVUEaBZHQKAVo8AaNuN1fZQoaAZoCWgPQwjWVYFajJ5yQJSGlFKUaBVNJwRoFkdAoBfK9M9KVnV9lChoBmgJaA9DCNaryOgAenJAlIaUUpRoFU1VBGgWR0CgGS7Kq4pddX2UKGgGaAloD0MIQ48YPTdyckCUhpRSlGgVTVQEaBZHQKAavlT3qRl1fZQoaAZoCWgPQwgiNIKNq5hyQJSGlFKUaBVNKARoFkdAoBumVJL/THV9lChoBmgJaA9DCIGwU6waRDzAlIaUUpRoFU1GAWgWR0CgHRYvFm4BdX2UKGgGaAloD0MIpyVWRmOockCUhpRSlGgVTRQEaBZHQKAdLlzU7S11fZQoaAZoCWgPQwivCP63En9yQJSGlFKUaBVNYARoFkdAoB2uPzWf9XV9lChoBmgJaA9DCOZ2L/eJiHJAlIaUUpRoFU05BGgWR0CgICL3Cbc5dX2UKGgGaAloD0MIK4VALrGrckCUhpRSlGgVTRoEaBZHQKAhY5rgwXZ1fZQoaAZoCWgPQwg1YJD06XRyQJSGlFKUaBVNPgRoFkdAoDal2ki2UnV9lChoBmgJaA9DCPsD5bZ9g3JAlIaUUpRoFU0yBGgWR0CgN+2RJVbSdX2UKGgGaAloD0MIcy8wK9SSckCUhpRSlGgVTScEaBZHQKA4gjeKsMl1fZQoaAZoCWgPQwiSIjKsokByQJSGlFKUaBVNhwRoFkdAoDi3BacI7nV9lChoBmgJaA9DCLaA0Hq4gXJAlIaUUpRoFU1DBGgWR0CgOpzQeFL4dX2UKGgGaAloD0MIr7FLVG+dLMCUhpRSlGgVTX4BaBZHQKA6vrpJPIp1fZQoaAZoCWgPQwi1pQ7yuoJyQJSGlFKUaBVNJARoFkdAoDuGwaBI4HV9lChoBmgJaA9DCJ595UE6ZHJAlIaUUpRoFU1EBGgWR0CgPnPwEyLydX2UKGgGaAloD0MIAb9GkiCbckCUhpRSlGgVTSUEaBZHQKBABuuRs/J1fZQoaAZoCWgPQwjGvmTjwY9yQJSGlFKUaBVNGwRoFkdAoEAp24d6s3V9lChoBmgJaA9DCPTAx2BFd3JAlIaUUpRoFU06BGgWR0CgQmXNs3yadX2UKGgGaAloD0MIGy/dJEZmckCUhpRSlGgVTVQEaBZHQKBCd2AXl8x1fZQoaAZoCWgPQwhR3sfRXHlyQJSGlFKUaBVNMgRoFkdAoEMiwOe8PHV9lChoBmgJaA9DCCOCcXApq3JAlIaUUpRoFU0RBGgWR0CgWNM3hn8LdX2UKGgGaAloD0MI7l9ZaVKeckCUhpRSlGgVTSUEaBZHQKBavWmP5pJ1fZQoaAZoCWgPQwhl48EWe3JyQJSGlFKUaBVNTQRoFkdAoFrsPJ7swHV9lChoBmgJaA9DCKdB0TyAwGdAlIaUUpRoFU00BGgWR0CgXTWKdhAodX2UKGgGaAloD0MI6BVPPdKFckCUhpRSlGgVTTYEaBZHQKBdTEP1+RZ1fZQoaAZoCWgPQwgWpBmLZmhyQJSGlFKUaBVNQQRoFkdAoF4MkQf6oHV9lChoBmgJaA9DCNiarbxkkXJAlIaUUpRoFU06BGgWR0CgYPSUTtb+dX2UKGgGaAloD0MIbQIMy1+YckCUhpRSlGgVTR4EaBZHQKBizEORT0h1fZQoaAZoCWgPQwitinCTEWZyQJSGlFKUaBVNSwRoFkdAoGNLYAbQ1XV9lChoBmgJaA9DCDbIJCOnrHJAlIaUUpRoFU0WBGgWR0CgZRJ1aGHpdX2UKGgGaAloD0MIxt6LLxqQckCUhpRSlGgVTTkEaBZHQKBlc3fhuO11ZS4="
78
+ },
79
+ "ep_success_buffer": {
80
+ ":type:": "<class 'collections.deque'>",
81
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
82
+ },
83
+ "_n_updates": 1070,
84
+ "n_steps": 2048,
85
+ "gamma": 0.98,
86
+ "gae_lambda": 0.95,
87
+ "ent_coef": 0.0,
88
+ "vf_coef": 0.5,
89
+ "max_grad_norm": 0.5,
90
+ "batch_size": 64,
91
+ "n_epochs": 10,
92
+ "clip_range": {
93
+ ":type:": "<class 'function'>",
94
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL29wdC9jb25kYS9saWIvcHl0aG9uMy43L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL29wdC9jb25kYS9saWIvcHl0aG9uMy43L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
95
+ },
96
+ "clip_range_vf": null,
97
+ "normalize_advantage": true,
98
+ "target_kl": null
99
+ }
PPO-BipedalWalker-v3/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e215d54f2b385f83d13eed59715c9762eb182232d05307baf021326207ddf526
3
+ size 101783
PPO-BipedalWalker-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:29e38d9a072fcebea8c47c3d448976bf9f8fa2f07dd6ad7df5e6cfcd73d6e835
3
+ size 51710
PPO-BipedalWalker-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
PPO-BipedalWalker-v3/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.107+-x86_64-with-debian-bullseye-sid #1 SMP Sun Apr 24 15:04:08 UTC 2022
2
+ Python: 3.7.12
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.9.1
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
README.md ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - BipedalWalker-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 252.42 +/- 112.66
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: BipedalWalker-v3
20
+ type: BipedalWalker-v3
21
+ ---
22
+
23
+ # **PPO** Agent playing **BipedalWalker-v3**
24
+ This is a trained model of a **PPO** agent playing **BipedalWalker-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
25
+
26
+ ## Usage (with Stable-baselines3)
27
+ TODO: Add your code
28
+
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fbc1a8f2680>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fbc1a8f2710>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fbc1a8f27a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fbc1a8f2830>", "_build": "<function ActorCriticPolicy._build at 0x7fbc1a8f28c0>", "forward": "<function ActorCriticPolicy.forward at 0x7fbc1a8f2950>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fbc1a8f29e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fbc1a8f2a70>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fbc1a8f2b00>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fbc1a8f2b90>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fbc1a8f2c20>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fbc1a945390>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVPwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLGIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWYAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UaApLGIWUjAFDlHSUUpSMBGhpZ2iUaBIolmAAAAAAAAAAAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgKSxiFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLGIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoIUsYhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [24], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVdwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/lGgKSwSFlIwBQ5R0lFKUjARoaWdolGgSKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaApLBIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYEAAAAAAAAAAEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYEAAAAAAAAAAEBAQGUaCFLBIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_np_random": null}, "n_envs": 6, "num_timesteps": 307200, "_total_timesteps": 300000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652448501.4214036, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL29wdC9jb25kYS9saWIvcHl0aG9uMy43L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL29wdC9jb25kYS9saWIvcHl0aG9uMy43L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVtQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZAAgAAAAAAANzO9j4jYD89lM59Pq5bND3l2lG/hJRRv0xnVz8AAIA/AAAAAG+7kD8AAAAAzi9OP6udJL8AAAAARLzePtFD4T4OJuk+Zlz3PrDvBj/VNBg//SgzP57SXz8AAIA/AACAP8M62b54hRu8CH1HPvGYIrzmGNY91MIGv+z4Hr8AAAAAAAAAAKXKez8QLkO+MKMYv3UyojwAAIA/lM21Psa+tT5jRbk+SAvBPngqzz4+/OU+/k4GP2X+KD8Qnnc/AACAP/9nXTyWzke9qPQNP8jMWzxHrTK9DKFMv/Q+xb4Hr0A/AAAAAK3Zlj8BAIA/FF8gP/3/f78AAAAAzc6cPvVYoD44pqg+eTK2Pn83yz4FJus+OdIMPyT+MD+yMGc/AACAP4Hkjj7sN+I8+WTDPujRM7yPfm6+AwCAP+wm/b4AAIC/AACAPzODjz8AAAAAGIuAvggfG74AAAAAPziYPsrymT4TVp8+jgypPrfbtz7+m80+IRjwPt/nGT/Iqlk/AACAPyl52TsZqY+6xNGKPiMh9T2Vmis+xgAcv3iNoL4LbBM/AACAP5+ojD8AAACwQKhAvQEAgD8AAAAAy2G+Pjj2wD7ohsU+pkDOPnCR3D44o/g+JqcRPwy2OT8AAIA/AACAP83ulj4MR7G8LVzxPvTzprv2eKy+XKIzv1BRyb4EAw4/AAAAAJ1JkT+5zwM/IKtvPQIAgD8AAAAA4yqYPjM4mT4TGp0+Y3SlPsgVtD4vyMs+ycTtPhs6Dj/o+Ts/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLBksYhpSMAUOUdJRSlC4="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVeQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYGAAAAAAAAAAAAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBoWUjAFDlHSUUpQu"}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.02400000000000002, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMITpgwmlV6ckCUhpRSlIwBbJRNVQSMAXSUR0CeqbBVuJk5dX2UKGgGaAloD0MIGf7TDVR6ckCUhpRSlGgVTUoEaBZHQJ6qC6g/Tsp1fZQoaAZoCWgPQwhXl1MCYnlyQJSGlFKUaBVNOQRoFkdAnq0VinYQKHV9lChoBmgJaA9DCLlPjgIEi3JAlIaUUpRoFU0nBGgWR0Ce2ryo4uK5dX2UKGgGaAloD0MIeNFXkGahckCUhpRSlGgVTSEEaBZHQJ7bDGn4wh51fZQoaAZoCWgPQwgpzHuc6WhyQJSGlFKUaBVNVwRoFkdAnt1b8rI5pHV9lChoBmgJaA9DCH4ZjBGJhnJAlIaUUpRoFU0vBGgWR0Ce3jK3d9DydX2UKGgGaAloD0MIYOXQIluYckCUhpRSlGgVTTAEaBZHQJ7euU6gdwN1fZQoaAZoCWgPQwhCeR9Hc3ByQJSGlFKUaBVNPARoFkdAnuH3qzJIUnV9lChoBmgJaA9DCDcz+tHwlXJAlIaUUpRoFU0uBGgWR0Ce6y/jsD4hdX2UKGgGaAloD0MI+vIC7GNlckCUhpRSlGgVTWMEaBZHQJ7rqfzz3AV1fZQoaAZoCWgPQwiH3XcMj4xyQJSGlFKUaBVNMwRoFkdAnu2v2K2rn3V9lChoBmgJaA9DCIzc09VddXJAlIaUUpRoFU1gBGgWR0Ce7c1UEPlNdX2UKGgGaAloD0MIr3d/vFeZckCUhpRSlGgVTT0EaBZHQJ7uM1LrX191fZQoaAZoCWgPQwgLe9rhLz9yQJSGlFKUaBVNjARoFkdAnxdhF/hESnV9lChoBmgJaA9DCKzmOSLfd0lAlIaUUpRoFU1tAmgWR0CfGPdYW+GodX2UKGgGaAloD0MIwlCHFS6AckCUhpRSlGgVTTAEaBZHQJ8gCOwPiDN1fZQoaAZoCWgPQwhVwhN6PXtyQJSGlFKUaBVNOARoFkdAnyNEnLJSznV9lChoBmgJaA9DCBXFq6xtcnJAlIaUUpRoFU0/BGgWR0CfI5VrylN2dX2UKGgGaAloD0MIvFtZovN5ckCUhpRSlGgVTTYEaBZHQJ8j+UGFBY51fZQoaAZoCWgPQwgY0At3LpBXwJSGlFKUaBVLgWgWR0CfJdLs8gZCdX2UKGgGaAloD0MIvr9BezWNckCUhpRSlGgVTSMEaBZHQJ8oOoGY8dR1fZQoaAZoCWgPQwgShZZ1P4NyQJSGlFKUaBVNIwRoFkdAnym2LDQ7cXV9lChoBmgJaA9DCPuvc9NmJVJAlIaUUpRoFU3UAmgWR0CfMBMYMvytdX2UKGgGaAloD0MIJ94BnjSWckCUhpRSlGgVTSwEaBZHQJ8wlfBvaUR1fZQoaAZoCWgPQwgzGvm8Io5yQJSGlFKUaBVNLARoFkdAnzLjnFHavnV9lChoBmgJaA9DCPImv0WnYnJAlIaUUpRoFU1HBGgWR0CfMxrKeTV2dX2UKGgGaAloD0MIgehJmZSGckCUhpRSlGgVTSMEaBZHQJ9bsg/1QIl1fZQoaAZoCWgPQwhKRPgXwWByQJSGlFKUaBVNZARoFkdAn14ePNmlInV9lChoBmgJaA9DCLBx/bv+W3JAlIaUUpRoFU07BGgWR0CfZMQv6CUYdX2UKGgGaAloD0MI96sA3y1tckCUhpRSlGgVTTUEaBZHQJ9lKI68xsV1fZQoaAZoCWgPQwj5Tsx68YNyQJSGlFKUaBVNOgRoFkdAn2eVb7j1f3V9lChoBmgJaA9DCMQlx53Sh3JAlIaUUpRoFU0yBGgWR0CfZ6+aBqbjdX2UKGgGaAloD0MIPUM4ZlmPckCUhpRSlGgVTTEEaBZHQJ9rnP7el9B1fZQoaAZoCWgPQwhbYfpeQ1pyQJSGlFKUaBVNVgRoFkdAn26CZWq95HV9lChoBmgJaA9DCL/Rjht+JVXAlIaUUpRoFUuWaBZHQJ9wsPlMh5h1fZQoaAZoCWgPQwhxx5v8loNyQJSGlFKUaBVNIARoFkdAn3QZwsGxEHV9lChoBmgJaA9DCDs0LEbdgXJAlIaUUpRoFU0+BGgWR0CfdCxMFlkIdX2UKGgGaAloD0MIEMzR4/eGckCUhpRSlGgVTS8EaBZHQJ92vAaef7J1fZQoaAZoCWgPQwjUZMbbin1yQJSGlFKUaBVNNQRoFkdAn3bra/RE4XV9lChoBmgJaA9DCE7v4v14lHJAlIaUUpRoFU0eBGgWR0Cfny5jH4oJdX2UKGgGaAloD0MImBb1SS5PckCUhpRSlGgVTXwEaBZHQJ+nJwxWT5h1fZQoaAZoCWgPQwgPuRluQI1yQJSGlFKUaBVNKgRoFkdAn6mLo8p1BHV9lChoBmgJaA9DCFd6bTZWdXJAlIaUUpRoFU1ABGgWR0CfqdwA2hqTdX2UKGgGaAloD0MIoiWPpyWTckCUhpRSlGgVTTAEaBZHQJ+sYUh3aBZ1fZQoaAZoCWgPQwhaZDvfz2tyQJSGlFKUaBVNSARoFkdAn6yaQq7ROXV9lChoBmgJaA9DCNPbn4vGd3JAlIaUUpRoFU08BGgWR0CfsEH3UQTVdX2UKGgGaAloD0MIO99PjdeKckCUhpRSlGgVTS0EaBZHQJ+2iVhTfix1fZQoaAZoCWgPQwiWBRN/VIdyQJSGlFKUaBVNMwRoFkdAn7nXyEtdzHV9lChoBmgJaA9DCNWSjnIwenJAlIaUUpRoFU1RBGgWR0CfuicmShaldX2UKGgGaAloD0MICg+aXfeHckCUhpRSlGgVTTkEaBZHQJ+8065oXbd1fZQoaAZoCWgPQwiWeEDZ1JRyQJSGlFKUaBVNLgRoFkdAn7zeH31zyXV9lChoBmgJaA9DCJavy/Cf6E7AlIaUUpRoFUveaBZHQJ/kKqwQlKN1fZQoaAZoCWgPQwg9LNSa5rRyQJSGlFKUaBVNFgRoFkdAn+Rkcjqv/3V9lChoBmgJaA9DCGTnbWx2gEFAlIaUUpRoFU07AmgWR0Cf6gHsTnJUdX2UKGgGaAloD0MItwn3yjyFckCUhpRSlGgVTUUEaBZHQJ/sFo4+8oR1fZQoaAZoCWgPQwjpZKn1/qByQJSGlFKUaBVNKQRoFkdAn+5Tfm9xqHV9lChoBmgJaA9DCEwW9x8ZmnJAlIaUUpRoFU1KBGgWR0Cf7vjBVMmGdX2UKGgGaAloD0MIm+jzUUbAT8CUhpRSlGgVS+NoFkdAn/GLIYFaCHV9lChoBmgJaA9DCMEcPX5vnHJAlIaUUpRoFU0vBGgWR0Cf9Fvv0AcUdX2UKGgGaAloD0MIR6ta0tGQckCUhpRSlGgVTTgEaBZHQJ/0s5hjOLR1fZQoaAZoCWgPQwjbp+MxA7NkQJSGlFKUaBVNQQRoFkdAn/nIZ/CqInV9lChoBmgJaA9DCNB+pIhMnHJAlIaUUpRoFU0/BGgWR0Cf+9MIu5BkdX2UKGgGaAloD0MIO+XRjTBsckCUhpRSlGgVTUwEaBZHQJ/+6Ii1Rch1fZQoaAZoCWgPQwhYO4pzFIByQJSGlFKUaBVNQwRoFkdAoBNMV8CxNnV9lChoBmgJaA9DCHWtvU+VZnJAlIaUUpRoFU1lBGgWR0CgFZXA/LTydX2UKGgGaAloD0MIl3DoLZ5lckCUhpRSlGgVTVUEaBZHQKAVo8AaNuN1fZQoaAZoCWgPQwjWVYFajJ5yQJSGlFKUaBVNJwRoFkdAoBfK9M9KVnV9lChoBmgJaA9DCNaryOgAenJAlIaUUpRoFU1VBGgWR0CgGS7Kq4pddX2UKGgGaAloD0MIQ48YPTdyckCUhpRSlGgVTVQEaBZHQKAavlT3qRl1fZQoaAZoCWgPQwgiNIKNq5hyQJSGlFKUaBVNKARoFkdAoBumVJL/THV9lChoBmgJaA9DCIGwU6waRDzAlIaUUpRoFU1GAWgWR0CgHRYvFm4BdX2UKGgGaAloD0MIpyVWRmOockCUhpRSlGgVTRQEaBZHQKAdLlzU7S11fZQoaAZoCWgPQwivCP63En9yQJSGlFKUaBVNYARoFkdAoB2uPzWf9XV9lChoBmgJaA9DCOZ2L/eJiHJAlIaUUpRoFU05BGgWR0CgICL3Cbc5dX2UKGgGaAloD0MIK4VALrGrckCUhpRSlGgVTRoEaBZHQKAhY5rgwXZ1fZQoaAZoCWgPQwg1YJD06XRyQJSGlFKUaBVNPgRoFkdAoDal2ki2UnV9lChoBmgJaA9DCPsD5bZ9g3JAlIaUUpRoFU0yBGgWR0CgN+2RJVbSdX2UKGgGaAloD0MIcy8wK9SSckCUhpRSlGgVTScEaBZHQKA4gjeKsMl1fZQoaAZoCWgPQwiSIjKsokByQJSGlFKUaBVNhwRoFkdAoDi3BacI7nV9lChoBmgJaA9DCLaA0Hq4gXJAlIaUUpRoFU1DBGgWR0CgOpzQeFL4dX2UKGgGaAloD0MIr7FLVG+dLMCUhpRSlGgVTX4BaBZHQKA6vrpJPIp1fZQoaAZoCWgPQwi1pQ7yuoJyQJSGlFKUaBVNJARoFkdAoDuGwaBI4HV9lChoBmgJaA9DCJ595UE6ZHJAlIaUUpRoFU1EBGgWR0CgPnPwEyLydX2UKGgGaAloD0MIAb9GkiCbckCUhpRSlGgVTSUEaBZHQKBABuuRs/J1fZQoaAZoCWgPQwjGvmTjwY9yQJSGlFKUaBVNGwRoFkdAoEAp24d6s3V9lChoBmgJaA9DCPTAx2BFd3JAlIaUUpRoFU06BGgWR0CgQmXNs3yadX2UKGgGaAloD0MIGy/dJEZmckCUhpRSlGgVTVQEaBZHQKBCd2AXl8x1fZQoaAZoCWgPQwhR3sfRXHlyQJSGlFKUaBVNMgRoFkdAoEMiwOe8PHV9lChoBmgJaA9DCCOCcXApq3JAlIaUUpRoFU0RBGgWR0CgWNM3hn8LdX2UKGgGaAloD0MI7l9ZaVKeckCUhpRSlGgVTSUEaBZHQKBavWmP5pJ1fZQoaAZoCWgPQwhl48EWe3JyQJSGlFKUaBVNTQRoFkdAoFrsPJ7swHV9lChoBmgJaA9DCKdB0TyAwGdAlIaUUpRoFU00BGgWR0CgXTWKdhAodX2UKGgGaAloD0MI6BVPPdKFckCUhpRSlGgVTTYEaBZHQKBdTEP1+RZ1fZQoaAZoCWgPQwgWpBmLZmhyQJSGlFKUaBVNQQRoFkdAoF4MkQf6oHV9lChoBmgJaA9DCNiarbxkkXJAlIaUUpRoFU06BGgWR0CgYPSUTtb+dX2UKGgGaAloD0MIbQIMy1+YckCUhpRSlGgVTR4EaBZHQKBizEORT0h1fZQoaAZoCWgPQwitinCTEWZyQJSGlFKUaBVNSwRoFkdAoGNLYAbQ1XV9lChoBmgJaA9DCDbIJCOnrHJAlIaUUpRoFU0WBGgWR0CgZRJ1aGHpdX2UKGgGaAloD0MIxt6LLxqQckCUhpRSlGgVTTkEaBZHQKBlc3fhuO11ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1070, "n_steps": 2048, "gamma": 0.98, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL29wdC9jb25kYS9saWIvcHl0aG9uMy43L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL29wdC9jb25kYS9saWIvcHl0aG9uMy43L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.107+-x86_64-with-debian-bullseye-sid #1 SMP Sun Apr 24 15:04:08 UTC 2022", "Python": "3.7.12", "Stable-Baselines3": "1.5.0", "PyTorch": "1.9.1", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:506d86c1882d3ef926dc78db8338e9e396c894f91eb38e1cdabb73f83d13951d
3
+ size 406828
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 252.4168279500005, "std_reward": 112.65842629582708, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-13T13:36:58.826221"}