DAIEF commited on
Commit
e5a7b0d
1 Parent(s): 361e1c2

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 184.50 +/- 106.92
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x792a4a9be680>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x792a4a9be710>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x792a4a9be7a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x792a4a9be830>", "_build": "<function ActorCriticPolicy._build at 0x792a4a9be8c0>", "forward": "<function ActorCriticPolicy.forward at 0x792a4a9be950>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x792a4a9be9e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x792a4a9bea70>", "_predict": "<function ActorCriticPolicy._predict at 0x792a4a9beb00>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x792a4a9beb90>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x792a4a9bec20>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x792a4a9becb0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x792a4a961ac0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1709231401748587442, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM20nrx7zpu6nnKRuvBfBDZsKmc6TsKnOQAAgD8AAIA/s1l4veGgxz7GoxY+FBdFvk9AhD2i4WA8AAAAAAAAAADmZgS+CDGaP2owgb73xDq+BBGCvsl6xr0AAAAAAAAAAKZfqT17jJ872jo0vTz5M77lxag7iDHsvAAAAAAAAAAAABhnPVwTSrq6Ot64q1ZlsdvLPrueaAE4AACAPwAAgD8zIS08KXB2uj2dd7rxu+c1SIiBOlLHkDkAAIA/AACAP81I2T1IPZK6A+9iuwvkjDjYrQA7a8n0OQAAAAAAAIA/pjSfPTYsnj7S6g89T+V1vllHMj0auVY9AAAAAAAAAADaIbk9KWQTumVuDDjN5IwzgHrRO35VJLcAAIA/AACAP7Nhwz04boK7s+YBvBwClzz7UrW8V9yAPQAAgD8AAIA/MxMgOx89zLk5lze6ZgbtsT5JP7vzAlo5AACAPwAAgD8zySK8rpOJui7a8Dhts94zurv2uk8PDLgAAIA/AACAPzMMsz1cE3e6C00yOHUmFrU7rMQ6Zh9GtwAAgD8AAIA/AHkXPY++Ibqattm4dd/Es4nivTrhoAE4AACAPwAAgD/jBoE+ls+NPzLfhj6UYoi+nheGPstF6j0AAAAAAAAAAAD0FTxIs4K6aoixuze8JTjp6dY6s390NgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQF2o2FWXC0qMAWyUTegDjAF0lEdAkzNTziCJ43V9lChoBkdAQnIPuogmq2gHTSQBaAhHQJM2YXHim2t1fZQoaAZHQGNfy1NQCS1oB03oA2gIR0CTOiTo+wC9dX2UKGgGR0BmECjSG8EnaAdN6ANoCEdAkz2ovnKW9nV9lChoBkdAShnOt4iX6mgHTQYBaAhHQJM+LkgfU4J1fZQoaAZHQGNLQK8cuJ1oB03oA2gIR0CTRBYht+CsdX2UKGgGR0Bg8FhNM496aAdN6ANoCEdAk0QqzmfXgHV9lChoBkdAQ+w0qH4462gHTRsBaAhHQJNN5N7Bwdd1fZQoaAZHQGE7qGtZFG5oB03oA2gIR0CTTvoSL61tdX2UKGgGR0Bjq2NcW0qpaAdN6ANoCEdAk1mdDx9XtHV9lChoBkdAW6aoAGSpzmgHTegDaAhHQJNcLCSA6Ml1fZQoaAZHQGP3aH9FWn1oB03oA2gIR0CTXQznied1dX2UKGgGR0BfOwOJ+DvmaAdN6ANoCEdAk10jgQ6IWXV9lChoBkdAYtKghbGFSWgHTegDaAhHQJNfPW4EwFl1fZQoaAZHQGMrtD+irT9oB03oA2gIR0CTeDz0HyEtdX2UKGgGR0BgzujsUqQSaAdN6ANoCEdAk3nQA+6iCnV9lChoBkfABalHBk7OmmgHTRQBaAhHQJOBpbLU1AJ1fZQoaAZHQGO3oaLn9vVoB03oA2gIR0CTgbcfeUILdX2UKGgGR0BnAo3eenQ6aAdN6ANoCEdAk4PzgVGkOHV9lChoBkdAZERPpIMBqGgHTegDaAhHQJOHHt/nW8R1fZQoaAZHQFyYaESM98toB03oA2gIR0CTjiZNfw7UdX2UKGgGR0Bl6MfYBeXzaAdN6ANoCEdAk46n71qWT3V9lChoBkdAZV6Xrt3OfWgHTegDaAhHQJOT15HEuQJ1fZQoaAZHwCkF4mkWRA9oB0v7aAhHQJOT1mNBF/h1fZQoaAZHQGU5YVIqbz9oB03oA2gIR0CTk+bfxc3VdX2UKGgGR0BiqSBClabGaAdN6ANoCEdAk5wk03wTd3V9lChoBkdAZNJsoDxLCmgHTegDaAhHQJOdPgVGkN51fZQoaAZHQGGbfzz3AVRoB03oA2gIR0CTq4Net0V8dX2UKGgGR0Bhlv1WbPQfaAdN6ANoCEdAk65H4CZF5XV9lChoBkdAYnZkvsZ5zGgHTegDaAhHQJOvRHe7+UB1fZQoaAZHQGUnIyTINmVoB03oA2gIR0CTr12qkuYhdX2UKGgGR0Bjw238XN1RaAdN6ANoCEdAk8lEAxSHd3V9lChoBkdAYx+i22G7BmgHTegDaAhHQJPKXNIK+i91fZQoaAZHQGHNHZK3/gloB03oA2gIR0CT0cZn+Q2ddX2UKGgGR0BkKKyMUAT7aAdN6ANoCEdAk9HbdadMCnV9lChoBkdAZXhF5OafBmgHTegDaAhHQJPYFt8/lhh1fZQoaAZHQF8vVwgkkbBoB03oA2gIR0CT30Difg76dX2UKGgGR0BiQLqSowVTaAdN6ANoCEdAk9+puZThpHV9lChoBkdAYE5/+85CGGgHTegDaAhHQJPkFV94NZx1fZQoaAZHQGeZ5W7voeRoB03oA2gIR0CT5BPdl/YrdX2UKGgGR0BeuuUpuuRtaAdN6ANoCEdAk+Qj3225QXV9lChoBkdAW4jE74i5eGgHTegDaAhHQJPr9WU8mrt1fZQoaAZHQHB3YEB8x9JoB02qAWgIR0CT7AbVjI7vdX2UKGgGR0Blf18ma6SUaAdN6ANoCEdAk+0Antv4unV9lChoBkfAJnoOQQtjC2gHTRgBaAhHQJP0R2Rq46R1fZQoaAZHQGVylB6a9bpoB03oA2gIR0CT+D6Oo5xSdX2UKGgGR0BnabR8c+7laAdN6ANoCEdAk/r/HPu5SXV9lChoBkdAYsVkH2RJVmgHTegDaAhHQJP8DD0lJH11fZQoaAZHQGJhiWVu76JoB03oA2gIR0CT/CNhE0BPdX2UKGgGR0Bl2hzNliBoaAdN6ANoCEdAlBi2lANXo3V9lChoBkdAYqimQ8wHq2gHTegDaAhHQJQaFNxlxwR1fZQoaAZHQElTmWdEsrdoB0v7aAhHQJQdhtelbeN1fZQoaAZHQGGPtp22XsxoB03oA2gIR0CUIwAPNFBqdX2UKGgGR0BlyWMCLdeqaAdN6ANoCEdAlCi1F6RhdHV9lChoBkdAY9G5q/M4cWgHTegDaAhHQJQvw9hZyMl1fZQoaAZHQGTKX++/QBxoB03oA2gIR0CUMDzmwJPZdX2UKGgGR0BnHrmEGqxUaAdN6ANoCEdAlDWc36yjYnV9lChoBkdAYd19Ujs2N2gHTegDaAhHQJQ1sxM36yl1fZQoaAZHQGHYB06o2n9oB03oA2gIR0CUP9lhPTG6dX2UKGgGR0BjPC8SPEKmaAdN6ANoCEdAlD/qfOD8L3V9lChoBkdAZtSujh1klWgHTegDaAhHQJRA7uv2XcB1fZQoaAZHQGVRBQFcIJJoB03oA2gIR0CUR6+IuXeFdX2UKGgGR0Bgj+rELpiaaAdN6ANoCEdAlEtj0lJHy3V9lChoBkdAXDtnHvMKTmgHTegDaAhHQJROw79ycTd1fZQoaAZHQGQzBczImw9oB03oA2gIR0CUTtrcCYCydX2UKGgGR0BhYTFn7HhkaAdN6ANoCEdAlFjxMBZIQXV9lChoBkdAZGy8Djin52gHTegDaAhHQJRtCbExZdR1fZQoaAZHQGV2k3juKGdoB03oA2gIR0CUcETgVGkOdX2UKGgGR0BhvG9US7GvaAdN6ANoCEdAlHVcQI2OyXV9lChoBkdAZWDB3Roh6mgHTegDaAhHQJR6uiWVu791fZQoaAZHQGLCmhdt2s9oB03oA2gIR0CUgZ/Aj6eodX2UKGgGR0BkKWfTTfBOaAdN6ANoCEdAlIIq6nR9gHV9lChoBkdAZlzPIGQjlmgHTegDaAhHQJSG8TdtVJd1fZQoaAZHQF/vCqp97WxoB03oA2gIR0CUhwHhS9/SdX2UKGgGR0BhdPqJMxoJaAdN6ANoCEdAlI9crZrYXnV9lChoBkdAYlJzo2XLNmgHTegDaAhHQJSPbkELYwt1fZQoaAZHQGViLAYYR/VoB03oA2gIR0CUkIOLiuMddX2UKGgGR0BkblkhA4XGaAdN6ANoCEdAlJlwUYbbUXV9lChoBkdAYUI6U7jkuGgHTegDaAhHQJSega86FM91fZQoaAZHQF6LRiPQv6FoB03oA2gIR0CUohi1RceKdX2UKGgGR0BgWIlY2bXpaAdN6ANoCEdAlKIweA/cFnV9lChoBkdAWTjxb0OEumgHTegDaAhHQJStBy3kPtl1fZQoaAZHQGHDyTINmUZoB03oA2gIR0CUrmZZB9kSdX2UKGgGR0Bhba0WuX/paAdN6ANoCEdAlMKOJLuhK3V9lChoBkdAYn+TdLxqf2gHTegDaAhHQJTI/AEdNnJ1fZQoaAZHQGQjZT6zmfZoB03oA2gIR0CUz2ZuhsZYdX2UKGgGR0BmnmfmLcbjaAdN6ANoCEdAlNY5SR8tw3V9lChoBkdAYdI8FINEw2gHTegDaAhHQJTWwHbAUL51fZQoaAZHQGDO0JF9a2ZoB03oA2gIR0CU3BiRGMGYdX2UKGgGR0BgP7NnoPkJaAdN6ANoCEdAlNwvU4JeFHV9lChoBkdAYy5CBPKuCGgHTegDaAhHQJTlbM+u/1x1fZQoaAZHQGZ3nWSU1Q9oB03oA2gIR0CU5X+36Q/5dX2UKGgGR0Bhm3/zasZHaAdN6ANoCEdAlOaoSYgJTnV9lChoBkdAUITNbC79RGgHTQQBaAhHQJTnVRMvh611fZQoaAZHQGWGDjrAxi5oB03oA2gIR0CU7iXIU8FIdX2UKGgGR0Bhj5ib2Dg7aAdN6ANoCEdAlPIRgy/KyXV9lChoBkdAYZK/bj94vGgHTegDaAhHQJT15S1maph1fZQoaAZHQGRQYoy9EkVoB03oA2gIR0CU9gH6uW8idX2UKGgGR0BgtQUvf0mMaAdN6ANoCEdAlQGLJ0W/J3V9lChoBkdAZAybXpW3jWgHTegDaAhHQJUCvggow251ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a01984406f4a5044d0abf5c01f6b72a0e7e960f5b342d58d0948838f7debb063
3
+ size 148084
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x792a4a9be680>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x792a4a9be710>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x792a4a9be7a0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x792a4a9be830>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x792a4a9be8c0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x792a4a9be950>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x792a4a9be9e0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x792a4a9bea70>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x792a4a9beb00>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x792a4a9beb90>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x792a4a9bec20>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x792a4a9becb0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x792a4a961ac0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1709231401748587442,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM20nrx7zpu6nnKRuvBfBDZsKmc6TsKnOQAAgD8AAIA/s1l4veGgxz7GoxY+FBdFvk9AhD2i4WA8AAAAAAAAAADmZgS+CDGaP2owgb73xDq+BBGCvsl6xr0AAAAAAAAAAKZfqT17jJ872jo0vTz5M77lxag7iDHsvAAAAAAAAAAAABhnPVwTSrq6Ot64q1ZlsdvLPrueaAE4AACAPwAAgD8zIS08KXB2uj2dd7rxu+c1SIiBOlLHkDkAAIA/AACAP81I2T1IPZK6A+9iuwvkjDjYrQA7a8n0OQAAAAAAAIA/pjSfPTYsnj7S6g89T+V1vllHMj0auVY9AAAAAAAAAADaIbk9KWQTumVuDDjN5IwzgHrRO35VJLcAAIA/AACAP7Nhwz04boK7s+YBvBwClzz7UrW8V9yAPQAAgD8AAIA/MxMgOx89zLk5lze6ZgbtsT5JP7vzAlo5AACAPwAAgD8zySK8rpOJui7a8Dhts94zurv2uk8PDLgAAIA/AACAPzMMsz1cE3e6C00yOHUmFrU7rMQ6Zh9GtwAAgD8AAIA/AHkXPY++Ibqattm4dd/Es4nivTrhoAE4AACAPwAAgD/jBoE+ls+NPzLfhj6UYoi+nheGPstF6j0AAAAAAAAAAAD0FTxIs4K6aoixuze8JTjp6dY6s390NgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVQgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQF2o2FWXC0qMAWyUTegDjAF0lEdAkzNTziCJ43V9lChoBkdAQnIPuogmq2gHTSQBaAhHQJM2YXHim2t1fZQoaAZHQGNfy1NQCS1oB03oA2gIR0CTOiTo+wC9dX2UKGgGR0BmECjSG8EnaAdN6ANoCEdAkz2ovnKW9nV9lChoBkdAShnOt4iX6mgHTQYBaAhHQJM+LkgfU4J1fZQoaAZHQGNLQK8cuJ1oB03oA2gIR0CTRBYht+CsdX2UKGgGR0Bg8FhNM496aAdN6ANoCEdAk0QqzmfXgHV9lChoBkdAQ+w0qH4462gHTRsBaAhHQJNN5N7Bwdd1fZQoaAZHQGE7qGtZFG5oB03oA2gIR0CTTvoSL61tdX2UKGgGR0Bjq2NcW0qpaAdN6ANoCEdAk1mdDx9XtHV9lChoBkdAW6aoAGSpzmgHTegDaAhHQJNcLCSA6Ml1fZQoaAZHQGP3aH9FWn1oB03oA2gIR0CTXQznied1dX2UKGgGR0BfOwOJ+DvmaAdN6ANoCEdAk10jgQ6IWXV9lChoBkdAYtKghbGFSWgHTegDaAhHQJNfPW4EwFl1fZQoaAZHQGMrtD+irT9oB03oA2gIR0CTeDz0HyEtdX2UKGgGR0BgzujsUqQSaAdN6ANoCEdAk3nQA+6iCnV9lChoBkfABalHBk7OmmgHTRQBaAhHQJOBpbLU1AJ1fZQoaAZHQGO3oaLn9vVoB03oA2gIR0CTgbcfeUILdX2UKGgGR0BnAo3eenQ6aAdN6ANoCEdAk4PzgVGkOHV9lChoBkdAZERPpIMBqGgHTegDaAhHQJOHHt/nW8R1fZQoaAZHQFyYaESM98toB03oA2gIR0CTjiZNfw7UdX2UKGgGR0Bl6MfYBeXzaAdN6ANoCEdAk46n71qWT3V9lChoBkdAZV6Xrt3OfWgHTegDaAhHQJOT15HEuQJ1fZQoaAZHwCkF4mkWRA9oB0v7aAhHQJOT1mNBF/h1fZQoaAZHQGU5YVIqbz9oB03oA2gIR0CTk+bfxc3VdX2UKGgGR0BiqSBClabGaAdN6ANoCEdAk5wk03wTd3V9lChoBkdAZNJsoDxLCmgHTegDaAhHQJOdPgVGkN51fZQoaAZHQGGbfzz3AVRoB03oA2gIR0CTq4Net0V8dX2UKGgGR0Bhlv1WbPQfaAdN6ANoCEdAk65H4CZF5XV9lChoBkdAYnZkvsZ5zGgHTegDaAhHQJOvRHe7+UB1fZQoaAZHQGUnIyTINmVoB03oA2gIR0CTr12qkuYhdX2UKGgGR0Bjw238XN1RaAdN6ANoCEdAk8lEAxSHd3V9lChoBkdAYx+i22G7BmgHTegDaAhHQJPKXNIK+i91fZQoaAZHQGHNHZK3/gloB03oA2gIR0CT0cZn+Q2ddX2UKGgGR0BkKKyMUAT7aAdN6ANoCEdAk9HbdadMCnV9lChoBkdAZXhF5OafBmgHTegDaAhHQJPYFt8/lhh1fZQoaAZHQF8vVwgkkbBoB03oA2gIR0CT30Difg76dX2UKGgGR0BiQLqSowVTaAdN6ANoCEdAk9+puZThpHV9lChoBkdAYE5/+85CGGgHTegDaAhHQJPkFV94NZx1fZQoaAZHQGeZ5W7voeRoB03oA2gIR0CT5BPdl/YrdX2UKGgGR0BeuuUpuuRtaAdN6ANoCEdAk+Qj3225QXV9lChoBkdAW4jE74i5eGgHTegDaAhHQJPr9WU8mrt1fZQoaAZHQHB3YEB8x9JoB02qAWgIR0CT7AbVjI7vdX2UKGgGR0Blf18ma6SUaAdN6ANoCEdAk+0Antv4unV9lChoBkfAJnoOQQtjC2gHTRgBaAhHQJP0R2Rq46R1fZQoaAZHQGVylB6a9bpoB03oA2gIR0CT+D6Oo5xSdX2UKGgGR0BnabR8c+7laAdN6ANoCEdAk/r/HPu5SXV9lChoBkdAYsVkH2RJVmgHTegDaAhHQJP8DD0lJH11fZQoaAZHQGJhiWVu76JoB03oA2gIR0CT/CNhE0BPdX2UKGgGR0Bl2hzNliBoaAdN6ANoCEdAlBi2lANXo3V9lChoBkdAYqimQ8wHq2gHTegDaAhHQJQaFNxlxwR1fZQoaAZHQElTmWdEsrdoB0v7aAhHQJQdhtelbeN1fZQoaAZHQGGPtp22XsxoB03oA2gIR0CUIwAPNFBqdX2UKGgGR0BlyWMCLdeqaAdN6ANoCEdAlCi1F6RhdHV9lChoBkdAY9G5q/M4cWgHTegDaAhHQJQvw9hZyMl1fZQoaAZHQGTKX++/QBxoB03oA2gIR0CUMDzmwJPZdX2UKGgGR0BnHrmEGqxUaAdN6ANoCEdAlDWc36yjYnV9lChoBkdAYd19Ujs2N2gHTegDaAhHQJQ1sxM36yl1fZQoaAZHQGHYB06o2n9oB03oA2gIR0CUP9lhPTG6dX2UKGgGR0BjPC8SPEKmaAdN6ANoCEdAlD/qfOD8L3V9lChoBkdAZtSujh1klWgHTegDaAhHQJRA7uv2XcB1fZQoaAZHQGVRBQFcIJJoB03oA2gIR0CUR6+IuXeFdX2UKGgGR0Bgj+rELpiaaAdN6ANoCEdAlEtj0lJHy3V9lChoBkdAXDtnHvMKTmgHTegDaAhHQJROw79ycTd1fZQoaAZHQGQzBczImw9oB03oA2gIR0CUTtrcCYCydX2UKGgGR0BhYTFn7HhkaAdN6ANoCEdAlFjxMBZIQXV9lChoBkdAZGy8Djin52gHTegDaAhHQJRtCbExZdR1fZQoaAZHQGV2k3juKGdoB03oA2gIR0CUcETgVGkOdX2UKGgGR0BhvG9US7GvaAdN6ANoCEdAlHVcQI2OyXV9lChoBkdAZWDB3Roh6mgHTegDaAhHQJR6uiWVu791fZQoaAZHQGLCmhdt2s9oB03oA2gIR0CUgZ/Aj6eodX2UKGgGR0BkKWfTTfBOaAdN6ANoCEdAlIIq6nR9gHV9lChoBkdAZlzPIGQjlmgHTegDaAhHQJSG8TdtVJd1fZQoaAZHQF/vCqp97WxoB03oA2gIR0CUhwHhS9/SdX2UKGgGR0BhdPqJMxoJaAdN6ANoCEdAlI9crZrYXnV9lChoBkdAYlJzo2XLNmgHTegDaAhHQJSPbkELYwt1fZQoaAZHQGViLAYYR/VoB03oA2gIR0CUkIOLiuMddX2UKGgGR0BkblkhA4XGaAdN6ANoCEdAlJlwUYbbUXV9lChoBkdAYUI6U7jkuGgHTegDaAhHQJSega86FM91fZQoaAZHQF6LRiPQv6FoB03oA2gIR0CUohi1RceKdX2UKGgGR0BgWIlY2bXpaAdN6ANoCEdAlKIweA/cFnV9lChoBkdAWTjxb0OEumgHTegDaAhHQJStBy3kPtl1fZQoaAZHQGHDyTINmUZoB03oA2gIR0CUrmZZB9kSdX2UKGgGR0Bhba0WuX/paAdN6ANoCEdAlMKOJLuhK3V9lChoBkdAYn+TdLxqf2gHTegDaAhHQJTI/AEdNnJ1fZQoaAZHQGQjZT6zmfZoB03oA2gIR0CUz2ZuhsZYdX2UKGgGR0BmnmfmLcbjaAdN6ANoCEdAlNY5SR8tw3V9lChoBkdAYdI8FINEw2gHTegDaAhHQJTWwHbAUL51fZQoaAZHQGDO0JF9a2ZoB03oA2gIR0CU3BiRGMGYdX2UKGgGR0BgP7NnoPkJaAdN6ANoCEdAlNwvU4JeFHV9lChoBkdAYy5CBPKuCGgHTegDaAhHQJTlbM+u/1x1fZQoaAZHQGZ3nWSU1Q9oB03oA2gIR0CU5X+36Q/5dX2UKGgGR0Bhm3/zasZHaAdN6ANoCEdAlOaoSYgJTnV9lChoBkdAUITNbC79RGgHTQQBaAhHQJTnVRMvh611fZQoaAZHQGWGDjrAxi5oB03oA2gIR0CU7iXIU8FIdX2UKGgGR0Bhj5ib2Dg7aAdN6ANoCEdAlPIRgy/KyXV9lChoBkdAYZK/bj94vGgHTegDaAhHQJT15S1maph1fZQoaAZHQGRQYoy9EkVoB03oA2gIR0CU9gH6uW8idX2UKGgGR0BgtQUvf0mMaAdN6ANoCEdAlQGLJ0W/J3V9lChoBkdAZAybXpW3jWgHTegDaAhHQJUCvggow251ZS4="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 248,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:faf0b5e72e9a2d882fd4841ac9fbeaf19c0915aec1f6f6be5de7a9e3c6eba000
3
+ size 88362
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a48c4003dcd46619d989b5e09b44016475d3f5bb894f450fb30c16625015da18
3
+ size 43762
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.1.0+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.25.2
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (197 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 184.5030087578419, "std_reward": 106.92407553648177, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-02-29T18:59:27.581425"}