YonghaoHe commited on
Commit
0ee8f60
Β·
verified Β·
1 Parent(s): 04e5e41

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +126 -3
README.md CHANGED
@@ -1,3 +1,126 @@
1
- ---
2
- license: gpl-3.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <div align="center">
2
+ <br>
3
+ <h1>DOSOD<br>
4
+ A Light-Weight Framework for Open-Set Object Detection with Decoupled Feature Alignment in Joint Space
5
+ </h1>
6
+ <br>
7
+ <a href="https://github.com/YonghaoHe">Yonghao He</a><sup><span>1,*,🌟 </span></sup>,
8
+ <a href="https://people.ucas.edu.cn/~suhu">Hu Su</a><sup><span>2,*,πŸ“§</span></sup>,
9
+ <a href="https://github.com/HarveyYesan">Haiyong Yu</a><sup><span>1,*</span></sup>,
10
+ <a href="https://cong-yang.github.io/">Cong Yang</a><sup><span>3</span></sup>,
11
+ <a href="">Wei Sui</a><sup><span>1</span></sup>,
12
+ <a href="">Cong Wang</a><sup><span>1</span></sup>,
13
+ <a href="www.amnrlab.org">Song Liu</a><sup><span>4,πŸ“§</span></sup>
14
+ <br>
15
+
16
+ \* Equal contribution, 🌟 Project lead, πŸ“§ Corresponding author
17
+
18
+ <sup>1</sup> D-Robotics, <br>
19
+ <sup>2</sup> State Key Laboratory of Multimodal Artificial Intelligence Systems(MAIS), Institute of Automation of Chinese Academy of Sciences,<br>
20
+ <sup>3</sup> BeeLab, School of Future Science and Engineering, Soochow University, <br>
21
+ <sup>4</sup> the School of Information Science and Technology, ShanghaiTech
22
+ University
23
+
24
+ [![arxiv paper](https://img.shields.io/badge/arXiv-Paper-red)](https://arxiv.org/abs/2412.14680)
25
+ [![license](https://img.shields.io/badge/License-GPLv3.0-blue)](LICENSE)
26
+ </div>
27
+ </div>
28
+
29
+ ## 1. Introduction
30
+
31
+ ### 1.1 Brief Introduction of DOSOD
32
+
33
+ Thanks to the new SOTA in open-vocabulary object detection established by YOLO-World,
34
+ open-vocabulary detection has been extensively applied in various scenarios.
35
+ Real-time open-vocabulary detection has attracted significant attention.
36
+ In our paper, Decoupled Open-Set Object Detection (**DOSOD**) is proposed as a
37
+ practical and highly efficient solution for supporting real-time OSOD tasks in robotic systems.
38
+ Specifically, DOSOD is constructed based on the YOLO-World pipeline by integrating a vision-language model (VLM) with a detector.
39
+ A Multilayer Perceptron (MLP) adaptor is developed to convert text embeddings extracted by the VLM into a joint space,
40
+ within which the detector learns the region representations of class-agnostic proposals.
41
+ Cross-modality features are directly aligned in the joint space,
42
+ avoiding the complex feature interactions and thereby improving computational efficiency.
43
+ DOSOD functions like a traditional closed-set detector during the testing phase,
44
+ effectively bridging the gap between closed-set and open-set detection.
45
+
46
+ ## 2. Model Overview
47
+
48
+ Following YOLO-World, we also pre-trained DOSOD-S/M/L from scratch on public datasets and conducted zero-shot evaluation on the `LVIS minival` and `COCO val2017`.
49
+ All pre-trained models are released.
50
+
51
+ ### 2.1 Zero-shot Evaluation on LVIS minival
52
+
53
+ <div><font size=2>
54
+
55
+ | model | Pre-train Data | Size | AP<sup>mini</sup> | AP<sub>r</sub> | AP<sub>c</sub> | AP<sub>f</sub> | weights |
56
+ |:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:---------------|:-----|:-----------------:|:--------------:|:--------------:|:--------------:|:----------------------------------------------------------------------------------------------------------------------------------:|
57
+ | <div style="text-align: center;">[YOLO-Worldv1-S]()<br>(repo)</div> | O365+GoldG | 640 | 24.3 | 16.6 | 22.1 | 27.7 | [HF Checkpoints πŸ€—](https://huggingface.co/wondervictor/YOLO-World/blob/main/yolo_world_v2_s_obj365v1_goldg_pretrain-55b943ea.pth) |
58
+ | <div style="text-align: center;">[YOLO-Worldv1-M]()<br>(repo)</div> | O365+GoldG | 640 | 28.6 | 19.7 | 26.6 | 31.9 | [HF Checkpoints πŸ€—](https://huggingface.co/wondervictor/YOLO-World/blob/main/yolo_world_v2_m_obj365v1_goldg_pretrain-c6237d5b.pth) |
59
+ | <div style="text-align: center;">[YOLO-Worldv1-L]()<br>(repo)</div> | O365+GoldG | 640 | 32.5 | 22.3 | 30.6 | 36.1 | [HF Checkpoints πŸ€—](https://huggingface.co/wondervictor/YOLO-World/blob/main/yolo_world_v2_l_obj365v1_goldg_pretrain-a82b1fe3.pth) |
60
+ | <div style="text-align: center;">[YOLO-Worldv1-S]()<br>(paper)</div> | O365+GoldG | 640 | 26.2 | 19.1 | 23.6 | 29.8 | [HF Checkpoints πŸ€—](https://huggingface.co/wondervictor/YOLO-World/blob/main/yolo_world_v2_s_obj365v1_goldg_pretrain-55b943ea.pth) |
61
+ | <div style="text-align: center;">[YOLO-Worldv1-M]()<br>(paper)</div> | O365+GoldG | 640 | 31.0 | 23.8 | 29.2 | 33.9 | [HF Checkpoints πŸ€—](https://huggingface.co/wondervictor/YOLO-World/blob/main/yolo_world_v2_m_obj365v1_goldg_pretrain-c6237d5b.pth) |
62
+ | <div style="text-align: center;">[YOLO-Worldv1-L]()<br>(paper)</div> | O365+GoldG | 640 | 35.0 | 27.1 | 32.8 | 38.3 | [HF Checkpoints πŸ€—](https://huggingface.co/wondervictor/YOLO-World/blob/main/yolo_world_v2_l_obj365v1_goldg_pretrain-a82b1fe3.pth) |
63
+ | [YOLO-Worldv2-S]() | O365+GoldG | 640 | 22.7 | 16.3 | 20.8 | 25.5 | [HF Checkpoints πŸ€—](https://huggingface.co/wondervictor/YOLO-World/blob/main/yolo_world_v2_s_obj365v1_goldg_pretrain-55b943ea.pth) |
64
+ | [YOLO-Worldv2-M]() | O365+GoldG | 640 | 30.0 | 25.0 | 27.2 | 33.4 | [HF Checkpoints πŸ€—](https://huggingface.co/wondervictor/YOLO-World/blob/main/yolo_world_v2_m_obj365v1_goldg_pretrain-c6237d5b.pth) |
65
+ | [YOLO-Worldv2-L]() | O365+GoldG | 640 | 33.0 | 22.6 | 32.0 | 35.8 | [HF Checkpoints πŸ€—](https://huggingface.co/wondervictor/YOLO-World/blob/main/yolo_world_v2_l_obj365v1_goldg_pretrain-a82b1fe3.pth) |
66
+ | [DOSOD-S]() | O365+GoldG | 640 | 26.7 | 19.9 | 25.1 | 29.3 | [HF Checkpoints πŸ€—](https://huggingface.co/D-Robotics/DOSOD/blob/main/dosod_mlp3x_s.pth) |
67
+ | [DOSOD-M]() | O365+GoldG | 640 | 31.3 | 25.7 | 29.6 | 33.7 | [HF Checkpoints πŸ€—](https://huggingface.co/D-Robotics/DOSOD/blob/main/dosod_mlp3x_m.pth) |
68
+ | [DOSOD-L]() | O365+GoldG | 640 | 34.4 | 29.1 | 32.6 | 36.6 | [HF Checkpoints πŸ€—](https://huggingface.co/D-Robotics/DOSOD/blob/main/dosod_mlp3x_l.pth) |
69
+
70
+ > NOTE: The results of YOLO-Worldv1 from repo and [paper](https://arxiv.org/abs/2401.17270) are different.
71
+
72
+ </font>
73
+ </div>
74
+
75
+ ### 2.2 Zero-shot Inference on COCO dataset
76
+
77
+ <div><font size=2>
78
+
79
+ | model | Pre-train Data | Size | AP | AP<sub>50</sub> | AP<sub>75</sub> |
80
+ |:--------------------------------------------------------------------------------------------------------------------:|:---------------|:-----|:----:|:---------------:|:---------------:|
81
+ | <div style="text-align: center;">[YOLO-Worldv1-S]()<br>(paper)</div> | O365+GoldG | 640 | 37.6 | 52.3 | 40.7 |
82
+ | <div style="text-align: center;">[YOLO-Worldv1-M]()<br>(paper)</div> | O365+GoldG | 640 | 42.8 | 58.3 | 46.4 |
83
+ | <div style="text-align: center;">[YOLO-Worldv1-L]()<br>(paper)</div> | O365+GoldG | 640 | 44.4 | 59.8 | 48.3 |
84
+ | [YOLO-Worldv2-S]() | O365+GoldG | 640 | 37.5 | 52.0 | 40.7 |
85
+ | [YOLO-Worldv2-M]() | O365+GoldG | 640 | 42.8 | 58.2 | 46.7 |
86
+ | [YOLO-Worldv2-L]() | O365+GoldG | 640 | 45.4 | 61.0 | 49.4 |
87
+ | [DOSOD-S]() | O365+GoldG | 640 | 36.1 | 51.0 | 39.1 |
88
+ | [DOSOD-M]() | O365+GoldG | 640 | 41.7 | 57.1 | 45.2 |
89
+ | [DOSOD-L]() | O365+GoldG | 640 | 44.6 | 60.5 | 48.4 |
90
+
91
+ </font>
92
+ </div>
93
+
94
+ ### 2.3 Latency On RTX 4090
95
+
96
+ We utilize the tool of `trtexec` in [TensorRT 8.6.1.6](https://developer.nvidia.com/tensorrt) to assess the latency in FP16 mode.
97
+ All models are re-parameterized with 80 categories from COCO.
98
+ Log info can be found by clicking the FPS.
99
+
100
+ | model | Params | FPS |
101
+ |:--------------:|:------:|:---------------------------------------:|
102
+ | YOLO-Worldv1-S | 13.32M | 1007 |
103
+ | YOLO-Worldv1-M | 28.93M | 702 |
104
+ | YOLO-Worldv1-L | 47.38M | 494 |
105
+ | YOLO-Worldv2-S | 12.66M | 1221 |
106
+ | YOLO-Worldv2-M | 28.20M | 771 |
107
+ | YOLO-Worldv2-L | 46.62M | 553 |
108
+ | DOSOD-S | 11.48M | 1582 |
109
+ | DOSOD-M | 26.31M | 922 |
110
+ | DOSOD-L | 44.19M | 632 |
111
+
112
+ > NOTE: FPS = 1000 / GPU Compute Time[mean]
113
+
114
+ ### 2.4 Latency On RDK X5
115
+
116
+ We evaluate the real-time performance of the YOLO-World-v2 model and our DOSOD model on the development kit of [D-Robotics RDK X5](https://d-robotics.cc/rdkx5).
117
+ The models are re-parameterized with 1203 categories defined in LVIS. We run the models on the RDK X5 using either 1 thread or 8 threads with INT8 or INT16 quantization modes.
118
+
119
+ | model | FPS (1 thread) | FPS (8 threads) |
120
+ |:-------------------------------:|:--------------:|:---------------:|
121
+ | YOLO-Worldv2-S<br/>(INT16/INT8) | 5.962/11.044 | 6.386/12.590 |
122
+ | YOLO-Worldv2-M<br/>(INT16/INT8) | 4.136/7.290 | 4.340/7.930 |
123
+ | YOLO-Worldv2-L<br/>(INT16/INT8) | 2.958/5.377 | 3.060/5.720 |
124
+ | DOSOD-S<br/>(INT16/INT8) | 12.527/31.020 | 14.657/47.328 |
125
+ | DOSOD-M<br/>(INT16/INT8) | 8.531/20.238 | 9.471/26.36 |
126
+ | DOSOD-L<br/>(INT16/INT8) | 5.663/12.799 | 6.069/14.939 |