0Shot1Shot-v0.1 / prepare_data.py
CyborgPaloma's picture
Upload 2 files
45f95fb verified
import os
import numpy as np
import torch
from torch.utils.data import Dataset, DataLoader, Sampler
from tqdm import tqdm
import librosa
import logging
import argparse
import json
import time
import torchaudio
from torchvision import transforms
import pickle
import random
def configure_logging():
logging.basicConfig(level=logging.DEBUG,
format='%(asctime)s - %(levelname)s - %(message)s',
handlers=[
logging.StreamHandler()
])
logging.info("Logging is set up.")
print("Logging is set up.")
def parse_args():
parser = argparse.ArgumentParser(description='Spectrogram Dataset Preparation')
parser.add_argument('--config', type=str, required=True, help='Path to the config file')
return parser.parse_args()
def load_config(config_path):
logging.info(f"Loading configuration from {config_path}")
print(f"Loading configuration from {config_path}")
try:
with open(config_path, 'r') as f:
config = json.load(f)
logging.info("Configuration loaded successfully")
print("Configuration loaded successfully")
return config
except Exception as e:
logging.error(f"Failed to load config file: {e}", exc_info=True)
print(f"Failed to load config file: {e}")
raise
def validate_audio(y, sr, target_sr=44100, min_duration=0.1):
logging.debug(f"Validating audio with sr={sr}, target_sr={target_sr}, min_duration={min_duration}")
print(f"Validating audio with sr={sr}, target_sr={target_sr}, min_duration={min_duration}")
if sr != target_sr:
logging.warning(f"Resampling from {sr} to {target_sr}")
print(f"Resampling from {sr} to {target_sr}")
y = librosa.resample(y, orig_sr=sr, target_sr=target_sr)
if len(y) < min_duration * target_sr:
pad_length = int(min_duration * target_sr - len(y))
y = np.pad(y, (0, pad_length), mode='constant')
logging.info(f"Audio file padded with {pad_length} samples")
print(f"Audio file padded with {pad_length} samples")
return y, target_sr
def strip_silence(y, sr, top_db=20, pad_duration=0.1):
logging.debug(f"Stripping silence with sr={sr}, top_db={top_db}, pad_duration={pad_duration}")
print(f"Stripping silence with sr={sr}, top_db={top_db}, pad_duration={pad_duration}")
y_trimmed, _ = librosa.effects.trim(y, top_db=top_db)
pad_length = int(pad_duration * sr)
y_padded = np.pad(y_trimmed, pad_length, mode='constant')
return y_padded
def audio_to_spectrogram(file_path, n_fft=2048, hop_length=256, n_mels=128, target_sr=44100, min_duration=0.1):
try:
logging.info(f"Loading file: {file_path}")
print(f"Loading file: {file_path}")
y, sr = librosa.load(file_path, sr=None)
logging.debug(f"Loaded file: {file_path} with sr={sr}")
print(f"Loaded file: {file_path} with sr={sr}")
y, sr = validate_audio(y, sr, target_sr, min_duration)
y = strip_silence(y, sr)
except Exception as e:
logging.error(f"Error reading {file_path}: {e}", exc_info=True)
print(f"Error reading {file_path}: {e}")
return None
y = librosa.util.normalize(y)
S = librosa.feature.melspectrogram(y=y, sr=sr, n_fft=n_fft, hop_length=hop_length, n_mels=n_mels)
S_dB = librosa.power_to_db(S, ref=np.max)
logging.debug(f"Generated spectrogram for file: {file_path}")
print(f"Generated spectrogram for file: {file_path}")
return S_dB
def validate_spectrogram(spectrogram, n_mels=128):
logging.debug(f"Validating spectrogram with n_mels={n_mels}")
print(f"Validating spectrogram with n_mels={n_mels}")
if spectrogram.shape[0] != n_mels:
raise ValueError(f"Spectrogram has incorrect number of mel bands: {spectrogram.shape[0]}")
if spectrogram.shape[1] == 0:
raise ValueError("Spectrogram has zero frames")
return True
def save_spectrogram(spectrogram, save_path):
os.makedirs(os.path.dirname(save_path), exist_ok=True)
np.save(save_path, spectrogram)
logging.debug(f"Spectrogram saved at {save_path}")
print(f"Spectrogram saved at {save_path}")
class AddNoise(torch.nn.Module):
def __init__(self, noise_type='white', snr=10):
super(AddNoise, self).__init__()
self.noise_type = noise_type
self.snr = snr
def forward(self, waveform):
noise = torch.randn_like(waveform)
signal_power = waveform.norm(p=2)
noise_power = noise.norm(p=2)
noise = noise * (signal_power / noise_power) / (10 ** (self.snr / 20))
return waveform + noise
class SpectrogramDataset(Dataset):
def __init__(self, config, directory, process_new=True):
logging.info("Initializing SpectrogramDataset...")
print("Initializing SpectrogramDataset...")
self.directory = directory
self.output_directory = config['output_directory']
self.spectrograms = []
self.labels = []
self.label_to_index = {}
self.process_new = process_new
self.config = config
# Paths for saving and loading cache
self.cache_path = os.path.join(self.output_directory, 'cache_data.npy')
self.dataset_path = os.path.join(self.output_directory, 'spectrogram_dataset.pkl')
if os.path.exists(self.dataset_path):
self.load_dataset()
else:
if os.path.exists(self.cache_path):
os.remove(self.cache_path)
logging.info(f"Cache cleared at {self.cache_path}")
print(f"Cache cleared at {self.cache_path}")
self.load_data()
self.save_dataset()
self.transforms = transforms.Compose([
torchaudio.transforms.FrequencyMasking(freq_mask_param=30),
torchaudio.transforms.TimeMasking(time_mask_param=30)
]) if self.config['augment'] else None
self.audio_transforms = torch.nn.Sequential(
AddNoise(snr=self.config['noise_snr']),
torchaudio.transforms.PitchShift(self.config['sample_rate'], n_steps=self.config['pitch_steps'])
) if self.config['augment'] else None
logging.info("SpectrogramDataset initialized successfully")
print("SpectrogramDataset initialized successfully")
def save_dataset(self):
with open(self.dataset_path, 'wb') as f:
pickle.dump(self, f)
logging.info(f"Dataset object saved at {self.dataset_path}")
print(f"Dataset object saved at {self.dataset_path}")
def load_dataset(self):
with open(self.dataset_path, 'rb') as f:
obj = pickle.load(f)
self.__dict__.update(obj.__dict__)
logging.info(f"Dataset object loaded from {self.dataset_path}")
print(f"Dataset object loaded from {self.dataset_path}")
def process_file(self, file_path):
logging.debug(f"Processing file: {file_path}")
print(f"Processing file: {file_path}")
try:
label = os.path.basename(os.path.dirname(file_path))
if label not in self.label_to_index:
self.label_to_index[label] = len(self.label_to_index)
relative_path = os.path.relpath(file_path, self.directory)
spectrogram_path = os.path.join(self.output_directory, os.path.splitext(relative_path)[0] + '_spectrogram.npy')
if not os.path.exists(spectrogram_path) and self.process_new:
spectrogram = audio_to_spectrogram(file_path, n_fft=self.config['n_fft'], hop_length=self.config['hop_length'], n_mels=self.config['n_mels'], target_sr=self.config['sample_rate'], min_duration=self.config['min_duration'])
if spectrogram is not None:
if spectrogram.shape[1] > self.config['max_frames']:
spectrogram = spectrogram[:, :self.config['max_frames']]
try:
validate_spectrogram(spectrogram, n_mels=self.config['n_mels'])
save_spectrogram(spectrogram, spectrogram_path)
logging.debug(f"Spectrogram saved: {spectrogram_path}")
print(f"Spectrogram saved: {spectrogram_path}")
except Exception as e:
logging.error(f"Error validating/saving spectrogram: {e}", exc_info=True)
print(f"Error validating/saving spectrogram: {e}")
if os.path.exists(spectrogram_path):
try:
spectrogram = np.load(spectrogram_path)
validate_spectrogram(spectrogram, n_mels=self.config['n_mels'])
spectrogram_tensor = torch.tensor(spectrogram, dtype=torch.float32)
self.spectrograms.append(spectrogram_tensor)
self.labels.append(self.label_to_index[label])
logging.debug(f"Spectrogram loaded and appended for file: {file_path}")
print(f"Spectrogram loaded and appended for file: {file_path}")
except Exception as e:
logging.error(f"Error loading spectrogram {spectrogram_path}: {e}", exc_info=True)
print(f"Error loading spectrogram {spectrogram_path}: {e}")
except Exception as e:
logging.error(f"Exception in process_file: {e}", exc_info=True)
print(f"Exception in process_file: {e}")
def load_data(self):
start_time = time.time()
logging.info("Starting to load and process files...")
print("Starting to load and process files...")
files_to_process = [os.path.join(root, file) for root, _, files in os.walk(self.directory) for file in files if file.lower().endswith('.wav')]
total_files = len(files_to_process)
logging.info(f"Total files to process: {total_files}")
print(f"Total files to process: {total_files}")
for file_path in tqdm(files_to_process, desc="Processing files"):
self.process_file(file_path)
end_time = time.time()
logging.info(f"Data loading and processing took {end_time - start_time:.2f} seconds")
print(f"Data loading and processing took {end_time - start_time:.2f} seconds")
self.save_cached_data(self.cache_path)
def save_cached_data(self, cache_path):
os.makedirs(os.path.dirname(cache_path), exist_ok=True)
np.save(cache_path, {'spectrograms': self.spectrograms, 'labels': self.labels})
logging.debug(f"Cached data saved at {cache_path}")
print(f"Cached data saved at {cache_path}")
def __len__(self):
return len(self.spectrograms)
def __getitem__(self, idx):
spectrogram, label = self.spectrograms[idx], self.labels[idx]
if self.config['augment']:
if spectrogram.shape[1] >= 256: # Ensure sufficient width for PitchShift
spectrogram = self.audio_transforms(spectrogram.unsqueeze(0)).squeeze(0)
spectrogram = self.transforms(spectrogram.unsqueeze(0)).squeeze(0)
return spectrogram, label
def collate_fn(batch):
spectrograms, labels = zip(*batch)
labels = torch.tensor(labels, dtype=torch.long)
max_length = max(s.size(1) for s in spectrograms)
max_freq = max(s.size(0) for s in spectrograms)
spectrograms_padded = torch.zeros(len(spectrograms), max_freq, max_length)
for i, s in enumerate(spectrograms):
if s.dim() == 3 and s.size(2) == 1:
s = s.squeeze(2)
spectrograms_padded[i, :s.size(0), :s.size(1)] = s
return spectrograms_padded, labels
class SmartBatchingSampler(Sampler):
def __init__(self, data_source, batch_size):
self.data_source = data_source
self.batch_size = batch_size
def __iter__(self):
sorted_indices = sorted(range(len(self.data_source)), key=lambda i: self.data_source[i][0].shape[1], reverse=True)
pooled_indices = [sorted_indices[i:i + self.batch_size] for i in range(0, len(sorted_indices), self.batch_size)]
random.shuffle(pooled_indices)
for p in pooled_indices:
yield from p
if len(sorted_indices) % self.batch_size != 0:
yield from sorted_indices[-(len(sorted_indices) % self.batch_size):]
def __len__(self):
return len(self.data_source) // self.batch_size
if __name__ == '__main__':
print("Starting script")
try:
args = parse_args()
print(f"Arguments parsed: {args}")
config = load_config(args.config)
print(f"Config loaded: {config}")
configure_logging()
print("Logging configured")
logging.info("Script started.")
dataset = SpectrogramDataset(config, config['directory'], process_new=True)
dataloader = DataLoader(dataset, batch_size=config['batch_size'], collate_fn=collate_fn, sampler=SmartBatchingSampler(dataset, config['batch_size']))
for batch in dataloader:
spectrograms, labels = batch
logging.info(f"Spectrograms batch shape: {spectrograms.shape}")
logging.info(f"Labels batch shape: {labels.shape}")
print(f"Spectrograms batch shape: {spectrograms.shape}")
print(f"Labels batch shape: {labels.shape}")
break
logging.info(f"Total files processed: {len(dataset)}")
print(f"Total files processed: {len(dataset)}")
except Exception as e:
logging.error(f"Exception occurred: {e}", exc_info=True)
print(f"Exception occurred: {e}")
finally:
logging.info("Script ended.")
print("Script ended")