create repo
Browse files- README.md +44 -0
- assets/curve.png +0 -0
- assets/logo.png +0 -0
- damoyolo_tinynasL20_T_418.pth +3 -0
README.md
CHANGED
@@ -1,3 +1,47 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
---
|
4 |
+
|
5 |
+
<div align="center"><img src="assets/logo.png" width="1500"></div>
|
6 |
+
|
7 |
+
## Model Description
|
8 |
+
This **DAMO-YOLO-T** model is a tiny-size object detection model with fast inference speed and high accuracy, trained by **DAMO-YOLO**.
|
9 |
+
|
10 |
+
**DAMO-YOLO** is a fast and accurate object detection method, which is developed by TinyML Team from Alibaba DAMO Data Analytics and Intelligence Lab. And it achieves a higher performance than state-of-the-art YOLO series. DAMO-YOLO is extend from YOLO but with some new techs, including Neural Architecture Search (NAS) backbones, efficient Reparameterized Generalized-FPN (RepGFPN), a lightweight head with AlignedOTA label assignment, and distillation enhancement. For more details, please refer to our [Arxiv Report](https://arxiv.org/abs/2211.15444) and [Github Code](https://github.com/tinyvision/DAMO-YOLO). Moreover, here you can find not only powerful models, but also highly efficient training strategies and complete tools from training to deployment.
|
11 |
+
|
12 |
+
<div align="center"><img src="assets/curve.png" width="500"></div>
|
13 |
+
|
14 |
+
## Chinese Web Demo
|
15 |
+
- We also provide Chinese Web Demo on ModelScope, including [DAMO-YOLO-T](https://www.modelscope.cn/models/damo/cv_tinynas_object-detection_damoyolo-t/summary), [DAMO-YOLO-S](https://modelscope.cn/models/damo/cv_tinynas_object-detection_damoyolo/summary), [DAMO-YOLO-M](https://www.modelscope.cn/models/damo/cv_tinynas_object-detection_damoyolo-m/summary).
|
16 |
+
|
17 |
+
## Datasets
|
18 |
+
The model is trained on COCO2017.
|
19 |
+
|
20 |
+
## Model Usage
|
21 |
+
The usage guideline can be found in our [Quick Start Tutorial](https://github.com/tinyvision/DAMO-YOLO).
|
22 |
+
|
23 |
+
## Model Evaluation
|
24 |
+
|Model |size |mAP<sup>val<br>0.5:0.95 | Latency T4<br>TRT-FP16-BS1| FLOPs<br>(G)| Params<br>(M)| Download |
|
25 |
+
| ------ |:---: | :---: |:---:|:---: | :---: | :---:|
|
26 |
+
|[DAMO-YOLO-T](./configs/damoyolo_tinynasL20_T.py) | 640 | 41.8 | 2.78 | 18.1 | 8.5 |[torch](https://idstcv.oss-cn-zhangjiakou.aliyuncs.com/DAMO-YOLO/clean_models/before_distill/damoyolo_tinynasL20_T_418.pth),[onnx](https://idstcv.oss-cn-zhangjiakou.aliyuncs.com/DAMO-YOLO/onnx/before_distill/damoyolo_tinynasL20_T_418.onnx) |
|
27 |
+
|[DAMO-YOLO-T*](./configs/damoyolo_tinynasL20_T.py) | 640 | 43.0 | 2.78 | 18.1 | 8.5 |[torch](https://idstcv.oss-cn-zhangjiakou.aliyuncs.com/DAMO-YOLO/clean_models/damoyolo_tinynasL20_T.pth),[onnx](https://idstcv.oss-cn-zhangjiakou.aliyuncs.com/DAMO-YOLO/onnx/damoyolo_tinynasL20_T.onnx) |
|
28 |
+
|[DAMO-YOLO-S](./configs/damoyolo_tinynasL25_S.py) | 640 | 45.6 | 3.83 | 37.8 | 16.3 |[torch](https://idstcv.oss-cn-zhangjiakou.aliyuncs.com/DAMO-YOLO/clean_models/before_distill/damoyolo_tinynasL25_S_456.pth),[onnx](https://idstcv.oss-cn-zhangjiakou.aliyuncs.com/DAMO-YOLO/onnx/before_distill/damoyolo_tinynasL25_S_456.onnx) |
|
29 |
+
|[DAMO-YOLO-S*](./configs/damoyolo_tinynasL25_S.py) | 640 | 46.8 | 3.83 | 37.8 | 16.3 |[torch](https://idstcv.oss-cn-zhangjiakou.aliyuncs.com/DAMO-YOLO/clean_models/damoyolo_tinynasL25_S.pth),[onnx](https://idstcv.oss-cn-zhangjiakou.aliyuncs.com/DAMO-YOLO/onnx/damoyolo_tinynasL25_S.onnx) |
|
30 |
+
|[DAMO-YOLO-M](./configs/damoyolo_tinynasL35_M.py) | 640 | 48.7 | 5.62 | 61.8 | 28.2 |[torch](https://idstcv.oss-cn-zhangjiakou.aliyuncs.com/DAMO-YOLO/clean_models/before_distill/damoyolo_tinynasL35_M_487.pth),[onnx](https://idstcv.oss-cn-zhangjiakou.aliyuncs.com/DAMO-YOLO/onnx/before_distill/damoyolo_tinynasL35_M_487.onnx)|
|
31 |
+
|[DAMO-YOLO-M*](./configs/damoyolo_tinynasL35_M.py) | 640 | 50.0 | 5.62 | 61.8 | 28.2 |[torch](https://idstcv.oss-cn-zhangjiakou.aliyuncs.com/DAMO-YOLO/clean_models/damoyolo_tinynasL35_M.pth),[onnx](https://idstcv.oss-cn-zhangjiakou.aliyuncs.com/DAMO-YOLO/onnx/damoyolo_tinynasL35_M.onnx)|
|
32 |
+
|
33 |
+
- We report the mAP of models on COCO2017 validation set, with multi-class NMS.
|
34 |
+
- The latency in this table is measured without post-processing.
|
35 |
+
- \* denotes the model trained with distillation.
|
36 |
+
|
37 |
+
## Cite DAMO-YOLO
|
38 |
+
If you use DAMO-YOLO in your research, please cite our work by using the following BibTeX entry:
|
39 |
+
|
40 |
+
```latex
|
41 |
+
@article{damoyolo,
|
42 |
+
title={DAMO-YOLO: A Report on Real-Time Object Detection Design},
|
43 |
+
author={Xianzhe Xu, Yiqi Jiang, Weihua Chen, Yilun Huang, Yuan Zhang and Xiuyu Sun},
|
44 |
+
journal={arXiv preprint arXiv:2211.15444v2},
|
45 |
+
year={2022},
|
46 |
+
}
|
47 |
+
```
|
assets/curve.png
ADDED
![]() |
assets/logo.png
ADDED
![]() |
damoyolo_tinynasL20_T_418.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a5ee63820e0e02a8a0779704c3ba477aefd66927e2e38900bb6cec0168005f95
|
3 |
+
size 36270881
|