Ahmed Essam
commited on
Upload 5 files
Browse files- handler.py +36 -0
- model.py +115 -0
- preprocessor.py +27 -0
- requirements.txt +13 -0
- settings.py +17 -0
handler.py
ADDED
|
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Dict, Any
|
| 2 |
+
import torch
|
| 3 |
+
import base64
|
| 4 |
+
from io import BytesIO
|
| 5 |
+
from model import Model
|
| 6 |
+
from PIL import Image
|
| 7 |
+
# set device
|
| 8 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 9 |
+
|
| 10 |
+
if device.type != 'cuda':
|
| 11 |
+
raise ValueError("need to run on GPU")
|
| 12 |
+
|
| 13 |
+
class EndpointHandler():
|
| 14 |
+
def __init__(self, path=""):
|
| 15 |
+
# load the optimized model
|
| 16 |
+
self.model = Model()
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
def __call__(self, data: Any) -> Any:
|
| 20 |
+
"""
|
| 21 |
+
Args:
|
| 22 |
+
data (:obj:):
|
| 23 |
+
includes the input data and the parameters for the inference.
|
| 24 |
+
Return:
|
| 25 |
+
A :obj:`dict`:. base64 encoded image
|
| 26 |
+
"""
|
| 27 |
+
inputs = data.pop("image", data)
|
| 28 |
+
|
| 29 |
+
image = Image.open(BytesIO(base64.b64decode(inputs)))
|
| 30 |
+
|
| 31 |
+
# run inference pipeline
|
| 32 |
+
_, res = self.model.process_lineart(image = image)
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
# encoding image as base 64 is done by the default toolkit
|
| 36 |
+
return res
|
model.py
ADDED
|
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from __future__ import annotations
|
| 2 |
+
import gc
|
| 3 |
+
import numpy as np
|
| 4 |
+
import PIL.Image
|
| 5 |
+
import torch
|
| 6 |
+
from diffusers import (
|
| 7 |
+
ControlNetModel,
|
| 8 |
+
DiffusionPipeline,
|
| 9 |
+
StableDiffusionControlNetPipeline,
|
| 10 |
+
UniPCMultistepScheduler,
|
| 11 |
+
)
|
| 12 |
+
|
| 13 |
+
from preprocessor import Preprocessor
|
| 14 |
+
from settings import *
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
class Model:
|
| 18 |
+
def __init__(self, base_model_id: str = "runwayml/stable-diffusion-v1-5", task_name: str = "lineart"):
|
| 19 |
+
self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 20 |
+
self.base_model_id = ""
|
| 21 |
+
self.task_name = ""
|
| 22 |
+
self.pipe = self.load_pipe(base_model_id, task_name)
|
| 23 |
+
self.preprocessor = Preprocessor()
|
| 24 |
+
|
| 25 |
+
def load_pipe(self, base_model_id: str, task_name) -> DiffusionPipeline:
|
| 26 |
+
if (
|
| 27 |
+
base_model_id == self.base_model_id
|
| 28 |
+
and task_name == self.task_name
|
| 29 |
+
and hasattr(self, "pipe")
|
| 30 |
+
and self.pipe is not None
|
| 31 |
+
):
|
| 32 |
+
return self.pipe
|
| 33 |
+
controlnet = ControlNetModel.from_pretrained(model_id, torch_dtype=torch.float16)
|
| 34 |
+
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
| 35 |
+
base_model_id, safety_checker=None, controlnet=controlnet, torch_dtype=torch.float16
|
| 36 |
+
)
|
| 37 |
+
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
| 38 |
+
if self.device.type == "cuda":
|
| 39 |
+
pipe.enable_xformers_memory_efficient_attention()
|
| 40 |
+
pipe.to(self.device)
|
| 41 |
+
torch.cuda.empty_cache()
|
| 42 |
+
gc.collect()
|
| 43 |
+
self.base_model_id = base_model_id
|
| 44 |
+
self.task_name = task_name
|
| 45 |
+
return pipe
|
| 46 |
+
|
| 47 |
+
def set_base_model(self, base_model_id: str) -> str:
|
| 48 |
+
if not base_model_id or base_model_id == self.base_model_id:
|
| 49 |
+
return self.base_model_id
|
| 50 |
+
del self.pipe
|
| 51 |
+
torch.cuda.empty_cache()
|
| 52 |
+
gc.collect()
|
| 53 |
+
try:
|
| 54 |
+
self.pipe = self.load_pipe(base_model_id, self.task_name)
|
| 55 |
+
except Exception:
|
| 56 |
+
self.pipe = self.load_pipe(self.base_model_id, self.task_name)
|
| 57 |
+
return self.base_model_id
|
| 58 |
+
|
| 59 |
+
def load_controlnet_weight(self, task_name: str) -> None:
|
| 60 |
+
if task_name == self.task_name:
|
| 61 |
+
return
|
| 62 |
+
if self.pipe is not None and hasattr(self.pipe, "controlnet"):
|
| 63 |
+
del self.pipe.controlnet
|
| 64 |
+
torch.cuda.empty_cache()
|
| 65 |
+
gc.collect()
|
| 66 |
+
controlnet = ControlNetModel.from_pretrained(model_id, torch_dtype=torch.float16)
|
| 67 |
+
controlnet.to(self.device)
|
| 68 |
+
torch.cuda.empty_cache()
|
| 69 |
+
gc.collect()
|
| 70 |
+
self.pipe.controlnet = controlnet
|
| 71 |
+
self.task_name = task_name
|
| 72 |
+
|
| 73 |
+
def get_prompt(self, prompt: str, additional_prompt: str) -> str:
|
| 74 |
+
if not prompt:
|
| 75 |
+
prompt = additional_prompt
|
| 76 |
+
else:
|
| 77 |
+
prompt = f"{prompt}, {additional_prompt}"
|
| 78 |
+
return prompt
|
| 79 |
+
|
| 80 |
+
@torch.autocast("cuda")
|
| 81 |
+
def run_pipe(
|
| 82 |
+
self,
|
| 83 |
+
control_image: PIL.Image.Image,
|
| 84 |
+
) -> list[PIL.Image.Image]:
|
| 85 |
+
generator = torch.Generator().manual_seed(randomize_seed)
|
| 86 |
+
return self.pipe(
|
| 87 |
+
prompt=prompt + ' ' + a_prompt,
|
| 88 |
+
negative_prompt=n_prompt,
|
| 89 |
+
guidance_scale=guidance_scale,
|
| 90 |
+
num_images_per_prompt=DEFAULT_NUM_IMAGES,
|
| 91 |
+
num_inference_steps=num_steps,
|
| 92 |
+
generator=generator,
|
| 93 |
+
image=control_image,
|
| 94 |
+
).images
|
| 95 |
+
|
| 96 |
+
def process_lineart(
|
| 97 |
+
self,
|
| 98 |
+
image: np.ndarray,
|
| 99 |
+
) -> list[PIL.Image.Image]:
|
| 100 |
+
if image is None:
|
| 101 |
+
raise ValueError
|
| 102 |
+
|
| 103 |
+
else:
|
| 104 |
+
|
| 105 |
+
self.preprocessor.load("Lineart")
|
| 106 |
+
control_image = self.preprocessor(
|
| 107 |
+
image=image,
|
| 108 |
+
image_resolution=DEFAULT_IMAGE_RESOLUTION,
|
| 109 |
+
detect_resolution=preprocess_resolution,
|
| 110 |
+
)
|
| 111 |
+
self.load_controlnet_weight("lineart")
|
| 112 |
+
results = self.run_pipe(
|
| 113 |
+
control_image=control_image
|
| 114 |
+
)
|
| 115 |
+
return [control_image] + results
|
preprocessor.py
ADDED
|
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gc
|
| 2 |
+
import PIL.Image
|
| 3 |
+
import torch
|
| 4 |
+
from controlnet_aux import LineartDetector
|
| 5 |
+
|
| 6 |
+
class Preprocessor:
|
| 7 |
+
MODEL_ID = "lllyasviel/Annotators"
|
| 8 |
+
|
| 9 |
+
def __init__(self):
|
| 10 |
+
self.model = None
|
| 11 |
+
self.name = ""
|
| 12 |
+
|
| 13 |
+
def load(self, name: str) -> None:
|
| 14 |
+
if name == self.name:
|
| 15 |
+
return
|
| 16 |
+
if name == "Lineart":
|
| 17 |
+
self.model = LineartDetector.from_pretrained(self.MODEL_ID)
|
| 18 |
+
|
| 19 |
+
else:
|
| 20 |
+
raise ValueError
|
| 21 |
+
torch.cuda.empty_cache()
|
| 22 |
+
gc.collect()
|
| 23 |
+
self.name = name
|
| 24 |
+
|
| 25 |
+
def __call__(self, image: PIL.Image.Image, **kwargs) -> PIL.Image.Image:
|
| 26 |
+
return self.model(image, **kwargs)
|
| 27 |
+
|
requirements.txt
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
accelerate==0.21.0
|
| 2 |
+
controlnet_aux==0.0.6
|
| 3 |
+
diffusers==0.18.2
|
| 4 |
+
einops==0.6.1
|
| 5 |
+
gradio==3.45.2
|
| 6 |
+
huggingface-hub==0.16.4
|
| 7 |
+
mediapipe==0.10.1
|
| 8 |
+
opencv-python-headless==4.8.0.74
|
| 9 |
+
safetensors==0.3.1
|
| 10 |
+
torch==2.0.1
|
| 11 |
+
torchvision==0.15.2
|
| 12 |
+
transformers==4.30.2
|
| 13 |
+
xformers==0.0.20
|
settings.py
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
DEFAULT_MODEL_ID = "runwayml/stable-diffusion-v1-5"
|
| 2 |
+
DEFAULT_NUM_IMAGES = 1
|
| 3 |
+
MAX_IMAGE_RESOLUTION = 768
|
| 4 |
+
DEFAULT_IMAGE_RESOLUTION = 768
|
| 5 |
+
preprocess_resolution = 512
|
| 6 |
+
num_steps = 20
|
| 7 |
+
guidance_scale = 9
|
| 8 |
+
randomize_seed = 0
|
| 9 |
+
|
| 10 |
+
task_name = "lineart"
|
| 11 |
+
model_id = "lllyasviel/control_v11p_sd15_lineart"
|
| 12 |
+
prompt = "Architecture, Building, Realistic, 3D Rendering, 2D Elevation, Professional."
|
| 13 |
+
|
| 14 |
+
a_prompt = "best quality, extremely detailed"
|
| 15 |
+
n_prompt = "longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality"
|
| 16 |
+
preprocessor_name = 'lineart'
|
| 17 |
+
|