Curious19 commited on
Commit
7c9edc7
·
1 Parent(s): 459cdfa

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +98 -0
README.md ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-nc-sa-4.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - cord-layoutlmv3
7
+ metrics:
8
+ - precision
9
+ - recall
10
+ - f1
11
+ - accuracy
12
+ model-index:
13
+ - name: project-ocr
14
+ results:
15
+ - task:
16
+ name: Token Classification
17
+ type: token-classification
18
+ dataset:
19
+ name: cord-layoutlmv3
20
+ type: cord-layoutlmv3
21
+ config: cord
22
+ split: test
23
+ args: cord
24
+ metrics:
25
+ - name: Precision
26
+ type: precision
27
+ value: 0.7515745276417075
28
+ - name: Recall
29
+ type: recall
30
+ value: 0.8038922155688623
31
+ - name: F1
32
+ type: f1
33
+ value: 0.7768535262206148
34
+ - name: Accuracy
35
+ type: accuracy
36
+ value: 0.8102716468590832
37
+ ---
38
+
39
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
40
+ should probably proofread and complete it, then remove this comment. -->
41
+
42
+ # project-ocr
43
+
44
+ This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the cord-layoutlmv3 dataset.
45
+ It achieves the following results on the evaluation set:
46
+ - Loss: 0.9877
47
+ - Precision: 0.7516
48
+ - Recall: 0.8039
49
+ - F1: 0.7769
50
+ - Accuracy: 0.8103
51
+
52
+ ## Model description
53
+
54
+ More information needed
55
+
56
+ ## Intended uses & limitations
57
+
58
+ More information needed
59
+
60
+ ## Training and evaluation data
61
+
62
+ More information needed
63
+
64
+ ## Training procedure
65
+
66
+ ### Training hyperparameters
67
+
68
+ The following hyperparameters were used during training:
69
+ - learning_rate: 1e-05
70
+ - train_batch_size: 5
71
+ - eval_batch_size: 5
72
+ - seed: 42
73
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
74
+ - lr_scheduler_type: linear
75
+ - training_steps: 500
76
+
77
+ ### Training results
78
+
79
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
80
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
81
+ | No log | 0.83 | 50 | 2.6184 | 0.4355 | 0.5404 | 0.4823 | 0.4338 |
82
+ | No log | 1.67 | 100 | 1.8766 | 0.5912 | 0.6018 | 0.5964 | 0.5620 |
83
+ | No log | 2.5 | 150 | 1.6165 | 0.5737 | 0.6347 | 0.6027 | 0.6150 |
84
+ | No log | 3.33 | 200 | 1.4317 | 0.5732 | 0.6737 | 0.6194 | 0.6944 |
85
+ | No log | 4.17 | 250 | 1.2787 | 0.6190 | 0.7126 | 0.6625 | 0.7347 |
86
+ | No log | 5.0 | 300 | 1.1632 | 0.6729 | 0.7560 | 0.7120 | 0.7759 |
87
+ | No log | 5.83 | 350 | 1.0990 | 0.6980 | 0.7665 | 0.7306 | 0.7857 |
88
+ | No log | 6.67 | 400 | 1.0327 | 0.7125 | 0.7792 | 0.7444 | 0.7946 |
89
+ | No log | 7.5 | 450 | 0.9994 | 0.7526 | 0.8016 | 0.7764 | 0.8065 |
90
+ | 1.6589 | 8.33 | 500 | 0.9877 | 0.7516 | 0.8039 | 0.7769 | 0.8103 |
91
+
92
+
93
+ ### Framework versions
94
+
95
+ - Transformers 4.27.1
96
+ - Pytorch 1.13.1+cu116
97
+ - Datasets 2.10.1
98
+ - Tokenizers 0.13.2