{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7be0ff2eba30>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7be0ff2ebac0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7be0ff2ebb50>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7be0ff2ebbe0>", "_build": "<function ActorCriticPolicy._build at 0x7be0ff2ebc70>", "forward": "<function ActorCriticPolicy.forward at 0x7be0ff2ebd00>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7be0ff2ebd90>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7be0ff2ebe20>", "_predict": "<function ActorCriticPolicy._predict at 0x7be0ff2ebeb0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7be0ff2ebf40>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7be0ff2f4040>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7be0ff2f40d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7be100454040>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1719236364384521618, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAHPeHr4ZAk0+lVlKPrxpXr5YVJU9lEmDvQAAAAAAAAAAZuwGvQpJNLsBNB28nZwBPF0YeDw7R+m8AACAPwAAgD/mz2q9XJwYvKGmOL3RKAq9RddyPYpG5z0AAIA/AACAPyZxzb2fscu7o/fkvX6qFb7iVRw9xQVZPgAAAAAAAIA/TVYZvg+uPLwFQzy7wHnAufqHnj0yaKQ6AACAPwAAgD9z0hy+DzdivG3LTzrFhoM4IZnIPXaki7kAAIA/AACAP9b5Vr6kIfE+KumEPLBlh77mqKC99sgAPQAAAAAAAAAAjSe+vSlsVrpeqo05pwLhNDu49ToYcqK4AACAPwAAAAA+foS+QmB0PiJMFz7HXXq+ipj0uzBAn7sAAAAAAAAAAHPWJb749Jk8amMHPtaBQ753fE2+ooMovwAAgD8AAAAApkJpvrCxjT5rQQy8M0NNvl2TXr3+whq8AAAAAAAAAAAANNe9j+Z6ut4h77Rd5D+wE/oWuk0QUjQAAIA/AAAAAOaOW71B5aM/SluZvt53/L6v2SK9hn1UvQAAAAAAAAAAs+tmvYmoLj8aUV29nCIEv8ZHTrwpWQ29AAAAAAAAAAA9HIw+fvr1PVWwab5SUCW+OLQwO7zxRbwAAAAAAAAAAAD5Hr5PNXK8qNiKtmD5hDeqD9s9/qsEtwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVCAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGWVOZssQNGMAWyUTegDjAF0lEdAmI1LL2YfGXV9lChoBkdAcFbJZ4fOlmgHS/5oCEdAmI10CzTnaHV9lChoBkdAcrXedkJ8fGgHTQIBaAhHQJiNnhhpg1F1fZQoaAZHQHBoTxLCemNoB0vXaAhHQJiOGfpUxVR1fZQoaAZHQHDF9nTRYzVoB0vLaAhHQJiP1Cw8nu11fZQoaAZHQG0mX7UG3WpoB0vpaAhHQJiQSp3os7N1fZQoaAZHQHGZ0JrtVrBoB0voaAhHQJiQY2ycCo11fZQoaAZHQHE8vigkC3hoB0vRaAhHQJiRXzreImB1fZQoaAZHQHICBpxm03RoB00iAWgIR0CYkku/k/8mdX2UKGgGR0BwAXI8yN4raAdL/WgIR0CYksrdFfAsdX2UKGgGR0BxaAUdq+JxaAdNLQFoCEdAmJLxqj8DS3V9lChoBkdAcW99YwIt2GgHS/RoCEdAmJMsd1dPcnV9lChoBkdAb3O+ajN6gWgHS+JoCEdAmJNvNNahYnV9lChoBkdAcRfWq94/vGgHS9BoCEdAmJPmfbsWwnV9lChoBkdAR95hH9WIXWgHS/BoCEdAmJP5OBUaQ3V9lChoBkdAcGZKBNEgGWgHS+xoCEdAmJQQWWQfZHV9lChoBkdAcH7QxvegtmgHTTECaAhHQJiUf5ZbILh1fZQoaAZHQG92Jk5IYm9oB0vtaAhHQJiWbuRcNYt1fZQoaAZHQHKGxKpT/AFoB0v0aAhHQJiXJfeDWbx1fZQoaAZHQHK3A4bS7XhoB00LAWgIR0CYl+zbvgFYdX2UKGgGR0BleKQmu1WsaAdN6ANoCEdAmJjB/qgRLHV9lChoBkdAcQ0J4SpR42gHS9loCEdAmJjzIRywOnV9lChoBkdAcLqVHFxXGWgHS/NoCEdAmJnojW07bXV9lChoBkdAcKTYEGJN02gHS91oCEdAmJpS9EkSmXV9lChoBkdActwM1jy4F2gHTSgBaAhHQJibADlo11p1fZQoaAZHQHD68cdYGMZoB0vgaAhHQJibNEx7AtZ1fZQoaAZHQFJ98B+4LCxoB00AAWgIR0CYm4sDGLk0dX2UKGgGR0BuqVuFYdQwaAdNXgFoCEdAmJu4MBp5/3V9lChoBkdAcY8nw5NoJ2gHTQwBaAhHQJicAYVIqb11fZQoaAZHQHGzWCAc1fpoB0vyaAhHQJieG7lJYkp1fZQoaAZHQHEfZIczZYhoB0vJaAhHQJieZ3wCr951fZQoaAZHQHDaYgieNDNoB00BAWgIR0CYn2NtqHoHdX2UKGgGR0BxQd2A5JbuaAdL3mgIR0CYn/ois4kvdX2UKGgGR0BwJ5hDw6QvaAdNAQFoCEdAmKF0vkBCD3V9lChoBkdARJsx9G7SRmgHS+VoCEdAmKLO/Yao/HV9lChoBkdAcVsigTRIBmgHS9toCEdAmKMVgUlAvHV9lChoBkdAbkjWmP5pJ2gHS+BoCEdAmKPdQGfPHHV9lChoBkdAcFaJVKf4AWgHS/xoCEdAmKPpJ5E+gXV9lChoBkdAcVyCkoF3ZGgHTUUBaAhHQJilFlI3BHl1fZQoaAZHQHGWZzkp7TloB00wAWgIR0CYpl7+1jRVdX2UKGgGR0BxNiUyHmA9aAdL8mgIR0CYpsl9BrvcdX2UKGgGR0BxOz73wkPdaAdL1WgIR0CYpyKyfL9udX2UKGgGR0BhBwCdSVGDaAdN6ANoCEdAmKeu7pV0cXV9lChoBkdAcNwV6/qPfmgHS+NoCEdAmKg5lnRLK3V9lChoBkdAcGFwSJ0nxGgHTTABaAhHQJipVq59Vm11fZQoaAZHQHBCbhBJI2BoB0vgaAhHQJirKq2jO9p1fZQoaAZHQHFN8LWqcVhoB00VAWgIR0CYq47fYSQHdX2UKGgGR0BiL5VbRne0aAdN6ANoCEdAmKwLX+VC5XV9lChoBkdAcPi9JSR8t2gHTRYBaAhHQJis00ygwoN1fZQoaAZHQHHb/mT1TR9oB00HAWgIR0CYrU1aW5YpdX2UKGgGR0BxcPaXa8HwaAdNEAFoCEdAmK2N65XlsHV9lChoBkdAbRomIj4YamgHTQcBaAhHQJiuZUkv9Lp1fZQoaAZHQHJ2I/JNj9ZoB0vJaAhHQJiuqVQhwER1fZQoaAZHQHAMbONYKY1oB0vtaAhHQJivVp/PPcB1fZQoaAZHQHDSPh/Aj6hoB0v8aAhHQJivh6w+t8x1fZQoaAZHQHBuhBZ6lchoB0v7aAhHQJiwv9pAUtZ1fZQoaAZHQHEhMPJ7sv9oB00LAWgIR0CYskhXKbKBdX2UKGgGR0Bsf5KODJ2daAdL7GgIR0CYsvgpjMFEdX2UKGgGR0BbB45cTrVwaAdN6ANoCEdAmLRMbBGhEnV9lChoBkdAcRa50bLlm2gHS+hoCEdAmLSo9gWrO3V9lChoBkdAZO66aLGaQWgHTegDaAhHQJi0wTewcHZ1fZQoaAZHQHJXNA5aNdZoB00HAWgIR0CYtP+JP69CdX2UKGgGR0Bys0waisXBaAdNFQFoCEdAmLUAo1DSgHV9lChoBkdAbsZ2B8QZoGgHS9poCEdAmLX9IsiB5HV9lChoBkdAcnkX3xnWa2gHS+FoCEdAmLdl8gIQe3V9lChoBkdAbP3YwIt16mgHS+hoCEdAmLfisCDEnHV9lChoBkdAcJ7jYqXnhmgHTTwBaAhHQJi4cNTcZcd1fZQoaAZHQHBeJckdFORoB0vaaAhHQJi65dZ7ojh1fZQoaAZHQHI0ERBeHBVoB00TAWgIR0CYu2PaL4vfdX2UKGgGR0BxRVyJbdJraAdL0mgIR0CYu3KMvRJFdX2UKGgGR0BwEJt0mtyQaAdNTwJoCEdAmLwDQNTcZnV9lChoBkdAcKOlOoHcDmgHS8VoCEdAmLzUs4DLbHV9lChoBkdAb3YDf3vhImgHS+ZoCEdAmL3t5le4TnV9lChoBkdAbnUZ88cMmWgHS9toCEdAmL4bIgeRxXV9lChoBkdAYS5ygf2bomgHTegDaAhHQJi+uq+8Gs51fZQoaAZHQHH1tbor4FloB00AAWgIR0CYwGP6sQumdX2UKGgGR0BwAY0/GEPEaAdNLQFoCEdAmMDPjsD4g3V9lChoBkdAcQda9sabWmgHTR0BaAhHQJjC5Y9xIat1fZQoaAZHwD5OquKXOW1oB0vDaAhHQJjDGMPz4Dd1fZQoaAZHQHKTlzQu27ZoB00VAWgIR0CYwyRTS9dvdX2UKGgGR0Bv3f18LKFJaAdL7WgIR0CYw7aWHDaXdX2UKGgGR0BwxwgLZzxPaAdL62gIR0CYw/+pwS8KdX2UKGgGR0BwnoevIOpbaAdL72gIR0CYxCuUUwi8dX2UKGgGR0Bw1Do/zJ6qaAdL4WgIR0CYxKlu3trsdX2UKGgGR0BxLoigTRICaAdNbwFoCEdAmMUjTa0x/XV9lChoBkdAbrlE/B3zMGgHS+JoCEdAmMV6MBIWg3V9lChoBkdAcDnrmyPdVWgHS/VoCEdAmMYjNdJJ5HV9lChoBkdAcuZ8wYcebWgHTREBaAhHQJjHX8ejmCB1fZQoaAZHQG7/gLRa5gBoB0vnaAhHQJjHmV/tpmF1fZQoaAZHQG5oT0Yj0MBoB0veaAhHQJjKGwNb1RN1fZQoaAZHQHGo84tHxz9oB003AWgIR0CYysaSLZSOdX2UKGgGR0BwEWKP4mCzaAdL92gIR0CYytBRAKOUdX2UKGgGR0BxrrBnBciXaAdL/2gIR0CYy0qslsxgdX2UKGgGR0Bx+Xq/ub7TaAdL6WgIR0CYy5UcXFcZdX2UKGgGR0A9s06HTI/8aAdL4mgIR0CYy9wQ176YdX2UKGgGR0Bwg+/fwZwXaAdL2mgIR0CYzBsmv4dqdX2UKGgGR0BwKpsl9jPOaAdL6WgIR0CYzPbVSXMRdX2UKGgGR0BwIfFdcB2faAdL8GgIR0CYzexusLfDdX2UKGgGR0BxZsWFev6kaAdL42gIR0CYzuu/1xsEdX2UKGgGR0Bko29+PRzBaAdN6ANoCEdAmNCk8A7xNXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |