Faeze commited on
Commit
43e0962
·
verified ·
1 Parent(s): fc5981a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +55 -302
README.md CHANGED
@@ -8,12 +8,18 @@ tags:
8
  metrics:
9
  - metric
10
  widget:
11
- - text: Damn, my condolences to you bro
12
- - text: No Friday Im booked all day
13
- - text: Im sorry.
14
- - text: Hiding in the bush
15
- - text: '*"The conservative party is a cult." Says the group that bans words and follows
16
- socialism.??*'
 
 
 
 
 
 
17
  pipeline_tag: text-classification
18
  inference: false
19
  base_model: sentence-transformers/paraphrase-mpnet-base-v2
@@ -29,320 +35,67 @@ model-index:
29
  split: test
30
  metrics:
31
  - type: metric
32
- value: 0.7340375623557441
33
  name: Metric
34
  ---
35
 
36
- # SetFit with sentence-transformers/paraphrase-mpnet-base-v2
37
 
38
- This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A ClassifierChain instance is used for classification.
39
 
40
- The model has been trained using an efficient few-shot learning technique that involves:
41
 
42
- 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
43
- 2. Training a classification head with features from the fine-tuned Sentence Transformer.
44
-
45
- ## Model Details
46
-
47
- ### Model Description
48
- - **Model Type:** SetFit
49
- - **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2)
50
- - **Classification head:** a ClassifierChain instance
51
- - **Maximum Sequence Length:** 512 tokens
52
- <!-- - **Number of Classes:** Unknown -->
53
- <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
54
- <!-- - **Language:** Unknown -->
55
- <!-- - **License:** Unknown -->
56
-
57
- ### Model Sources
58
-
59
- - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
60
- - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
61
- - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
62
-
63
- ## Evaluation
64
-
65
- ### Metrics
66
- | Label | Metric |
67
- |:--------|:-------|
68
- | **all** | 0.7340 |
69
-
70
- ## Uses
71
-
72
- ### Direct Use for Inference
73
-
74
- First install the SetFit library:
75
-
76
- ```bash
77
- pip install setfit
78
- ```
79
-
80
- Then you can load this model and run inference.
81
-
82
- ```python
83
- from setfit import SetFitModel
84
-
85
- # Download from the 🤗 Hub
86
- model = SetFitModel.from_pretrained("CrisisNarratives/setfit-8classes-multi_label")
87
- # Run inference
88
- preds = model("Im sorry.")
89
- ```
90
-
91
- <!--
92
- ### Downstream Use
93
-
94
- *List how someone could finetune this model on their own dataset.*
95
- -->
96
-
97
- <!--
98
- ### Out-of-Scope Use
99
-
100
- *List how the model may foreseeably be misused and address what users ought not to do with the model.*
101
- -->
102
-
103
- <!--
104
- ## Bias, Risks and Limitations
105
-
106
- *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
107
- -->
108
 
109
- <!--
110
- ### Recommendations
111
 
112
- *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
113
- -->
 
 
 
 
 
 
 
 
 
114
 
115
- ## Training Details
116
 
117
- ### Training Set Metrics
118
- | Training set | Min | Median | Max |
119
- |:-------------|:----|:--------|:-----|
120
- | Word count | 1 | 25.3789 | 1681 |
121
 
122
- ### Training Hyperparameters
123
- - batch_size: (16, 16)
124
- - num_epochs: (3, 3)
125
- - max_steps: -1
126
- - sampling_strategy: oversampling
127
- - num_iterations: 40
128
- - body_learning_rate: (1.752e-05, 1.752e-05)
129
- - head_learning_rate: 1.752e-05
130
- - loss: CosineSimilarityLoss
131
- - distance_metric: cosine_distance
132
- - margin: 0.25
133
- - end_to_end: False
134
- - use_amp: False
135
- - warmup_proportion: 0.1
136
- - seed: 30
137
- - eval_max_steps: -1
138
- - load_best_model_at_end: False
139
 
140
- ### Training Results
141
- | Epoch | Step | Training Loss | Validation Loss |
142
- |:------:|:----:|:-------------:|:---------------:|
143
- | 0.0004 | 1 | 0.4024 | - |
144
- | 0.0185 | 50 | 0.2502 | - |
145
- | 0.0370 | 100 | 0.2222 | - |
146
- | 0.0555 | 150 | 0.2279 | - |
147
- | 0.0739 | 200 | 0.2556 | - |
148
- | 0.0924 | 250 | 0.2444 | - |
149
- | 0.1109 | 300 | 0.2441 | - |
150
- | 0.1294 | 350 | 0.2538 | - |
151
- | 0.1479 | 400 | 0.2245 | - |
152
- | 0.1664 | 450 | 0.2111 | - |
153
- | 0.1848 | 500 | 0.1554 | - |
154
- | 0.2033 | 550 | 0.1361 | - |
155
- | 0.2218 | 600 | 0.1712 | - |
156
- | 0.2403 | 650 | 0.1506 | - |
157
- | 0.2588 | 700 | 0.1175 | - |
158
- | 0.2773 | 750 | 0.0695 | - |
159
- | 0.2957 | 800 | 0.0916 | - |
160
- | 0.3142 | 850 | 0.0884 | - |
161
- | 0.3327 | 900 | 0.0412 | - |
162
- | 0.3512 | 950 | 0.1189 | - |
163
- | 0.3697 | 1000 | 0.0485 | - |
164
- | 0.3882 | 1050 | 0.1098 | - |
165
- | 0.4067 | 1100 | 0.0303 | - |
166
- | 0.4251 | 1150 | 0.0244 | - |
167
- | 0.4436 | 1200 | 0.0429 | - |
168
- | 0.4621 | 1250 | 0.034 | - |
169
- | 0.4806 | 1300 | 0.0725 | - |
170
- | 0.4991 | 1350 | 0.0438 | - |
171
- | 0.5176 | 1400 | 0.0124 | - |
172
- | 0.5360 | 1450 | 0.1603 | - |
173
- | 0.5545 | 1500 | 0.1134 | - |
174
- | 0.5730 | 1550 | 0.098 | - |
175
- | 0.5915 | 1600 | 0.0343 | - |
176
- | 0.6100 | 1650 | 0.0354 | - |
177
- | 0.6285 | 1700 | 0.0892 | - |
178
- | 0.6470 | 1750 | 0.0137 | - |
179
- | 0.6654 | 1800 | 0.071 | - |
180
- | 0.6839 | 1850 | 0.0317 | - |
181
- | 0.7024 | 1900 | 0.0285 | - |
182
- | 0.7209 | 1950 | 0.0311 | - |
183
- | 0.7394 | 2000 | 0.0755 | - |
184
- | 0.7579 | 2050 | 0.09 | - |
185
- | 0.7763 | 2100 | 0.0565 | - |
186
- | 0.7948 | 2150 | 0.0099 | - |
187
- | 0.8133 | 2200 | 0.0236 | - |
188
- | 0.8318 | 2250 | 0.0663 | - |
189
- | 0.8503 | 2300 | 0.1391 | - |
190
- | 0.8688 | 2350 | 0.0176 | - |
191
- | 0.8872 | 2400 | 0.0645 | - |
192
- | 0.9057 | 2450 | 0.0318 | - |
193
- | 0.9242 | 2500 | 0.0186 | - |
194
- | 0.9427 | 2550 | 0.0514 | - |
195
- | 0.9612 | 2600 | 0.0261 | - |
196
- | 0.9797 | 2650 | 0.0535 | - |
197
- | 0.9982 | 2700 | 0.018 | - |
198
- | 1.0166 | 2750 | 0.0218 | - |
199
- | 1.0351 | 2800 | 0.0351 | - |
200
- | 1.0536 | 2850 | 0.0704 | - |
201
- | 1.0721 | 2900 | 0.0251 | - |
202
- | 1.0906 | 2950 | 0.0156 | - |
203
- | 1.1091 | 3000 | 0.0821 | - |
204
- | 1.1275 | 3050 | 0.0273 | - |
205
- | 1.1460 | 3100 | 0.0719 | - |
206
- | 1.1645 | 3150 | 0.0496 | - |
207
- | 1.1830 | 3200 | 0.0124 | - |
208
- | 1.2015 | 3250 | 0.0576 | - |
209
- | 1.2200 | 3300 | 0.0453 | - |
210
- | 1.2384 | 3350 | 0.0236 | - |
211
- | 1.2569 | 3400 | 0.013 | - |
212
- | 1.2754 | 3450 | 0.0909 | - |
213
- | 1.2939 | 3500 | 0.024 | - |
214
- | 1.3124 | 3550 | 0.0264 | - |
215
- | 1.3309 | 3600 | 0.0397 | - |
216
- | 1.3494 | 3650 | 0.0484 | - |
217
- | 1.3678 | 3700 | 0.0301 | - |
218
- | 1.3863 | 3750 | 0.0512 | - |
219
- | 1.4048 | 3800 | 0.0625 | - |
220
- | 1.4233 | 3850 | 0.0583 | - |
221
- | 1.4418 | 3900 | 0.0506 | - |
222
- | 1.4603 | 3950 | 0.0561 | - |
223
- | 1.4787 | 4000 | 0.0295 | - |
224
- | 1.4972 | 4050 | 0.1352 | - |
225
- | 1.5157 | 4100 | 0.0101 | - |
226
- | 1.5342 | 4150 | 0.0221 | - |
227
- | 1.5527 | 4200 | 0.057 | - |
228
- | 1.5712 | 4250 | 0.0389 | - |
229
- | 1.5896 | 4300 | 0.0173 | - |
230
- | 1.6081 | 4350 | 0.0605 | - |
231
- | 1.6266 | 4400 | 0.0187 | - |
232
- | 1.6451 | 4450 | 0.0401 | - |
233
- | 1.6636 | 4500 | 0.0571 | - |
234
- | 1.6821 | 4550 | 0.0612 | - |
235
- | 1.7006 | 4600 | 0.03 | - |
236
- | 1.7190 | 4650 | 0.0299 | - |
237
- | 1.7375 | 4700 | 0.0583 | - |
238
- | 1.7560 | 4750 | 0.0279 | - |
239
- | 1.7745 | 4800 | 0.027 | - |
240
- | 1.7930 | 4850 | 0.0343 | - |
241
- | 1.8115 | 4900 | 0.0634 | - |
242
- | 1.8299 | 4950 | 0.0748 | - |
243
- | 1.8484 | 5000 | 0.0699 | - |
244
- | 1.8669 | 5050 | 0.0678 | - |
245
- | 1.8854 | 5100 | 0.0724 | - |
246
- | 1.9039 | 5150 | 0.0211 | - |
247
- | 1.9224 | 5200 | 0.037 | - |
248
- | 1.9409 | 5250 | 0.0891 | - |
249
- | 1.9593 | 5300 | 0.0235 | - |
250
- | 1.9778 | 5350 | 0.0339 | - |
251
- | 1.9963 | 5400 | 0.029 | - |
252
- | 2.0148 | 5450 | 0.1292 | - |
253
- | 2.0333 | 5500 | 0.0457 | - |
254
- | 2.0518 | 5550 | 0.0577 | - |
255
- | 2.0702 | 5600 | 0.063 | - |
256
- | 2.0887 | 5650 | 0.0198 | - |
257
- | 2.1072 | 5700 | 0.0367 | - |
258
- | 2.1257 | 5750 | 0.0475 | - |
259
- | 2.1442 | 5800 | 0.0368 | - |
260
- | 2.1627 | 5850 | 0.0401 | - |
261
- | 2.1811 | 5900 | 0.0353 | - |
262
- | 2.1996 | 5950 | 0.0387 | - |
263
- | 2.2181 | 6000 | 0.0325 | - |
264
- | 2.2366 | 6050 | 0.046 | - |
265
- | 2.2551 | 6100 | 0.03 | - |
266
- | 2.2736 | 6150 | 0.0338 | - |
267
- | 2.2921 | 6200 | 0.0374 | - |
268
- | 2.3105 | 6250 | 0.0206 | - |
269
- | 2.3290 | 6300 | 0.031 | - |
270
- | 2.3475 | 6350 | 0.0493 | - |
271
- | 2.3660 | 6400 | 0.0182 | - |
272
- | 2.3845 | 6450 | 0.0352 | - |
273
- | 2.4030 | 6500 | 0.0622 | - |
274
- | 2.4214 | 6550 | 0.0682 | - |
275
- | 2.4399 | 6600 | 0.0227 | - |
276
- | 2.4584 | 6650 | 0.0401 | - |
277
- | 2.4769 | 6700 | 0.0348 | - |
278
- | 2.4954 | 6750 | 0.0417 | - |
279
- | 2.5139 | 6800 | 0.0232 | - |
280
- | 2.5323 | 6850 | 0.0603 | - |
281
- | 2.5508 | 6900 | 0.0981 | - |
282
- | 2.5693 | 6950 | 0.0433 | - |
283
- | 2.5878 | 7000 | 0.0187 | - |
284
- | 2.6063 | 7050 | 0.0099 | - |
285
- | 2.6248 | 7100 | 0.0276 | - |
286
- | 2.6433 | 7150 | 0.0516 | - |
287
- | 2.6617 | 7200 | 0.0211 | - |
288
- | 2.6802 | 7250 | 0.0191 | - |
289
- | 2.6987 | 7300 | 0.1152 | - |
290
- | 2.7172 | 7350 | 0.0442 | - |
291
- | 2.7357 | 7400 | 0.0226 | - |
292
- | 2.7542 | 7450 | 0.0429 | - |
293
- | 2.7726 | 7500 | 0.0313 | - |
294
- | 2.7911 | 7550 | 0.0601 | - |
295
- | 2.8096 | 7600 | 0.0156 | - |
296
- | 2.8281 | 7650 | 0.039 | - |
297
- | 2.8466 | 7700 | 0.0239 | - |
298
- | 2.8651 | 7750 | 0.1159 | - |
299
- | 2.8835 | 7800 | 0.0223 | - |
300
- | 2.9020 | 7850 | 0.0442 | - |
301
- | 2.9205 | 7900 | 0.0254 | - |
302
- | 2.9390 | 7950 | 0.0268 | - |
303
- | 2.9575 | 8000 | 0.0415 | - |
304
- | 2.9760 | 8050 | 0.0235 | - |
305
- | 2.9945 | 8100 | 0.0177 | - |
306
 
307
- ### Framework Versions
308
- - Python: 3.9.16
309
- - SetFit: 1.0.1
310
- - Sentence Transformers: 2.2.2
311
- - Transformers: 4.35.0
312
- - PyTorch: 2.1.0+cu121
313
- - Datasets: 2.14.6
314
- - Tokenizers: 0.14.1
315
 
316
- ## Citation
 
 
 
 
 
317
 
318
- ### BibTeX
319
- ```bibtex
320
- @article{https://doi.org/10.48550/arxiv.2209.11055,
321
- doi = {10.48550/ARXIV.2209.11055},
322
- url = {https://arxiv.org/abs/2209.11055},
323
- author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
324
- keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
325
- title = {Efficient Few-Shot Learning Without Prompts},
326
- publisher = {arXiv},
327
- year = {2022},
328
- copyright = {Creative Commons Attribution 4.0 International}
329
- }
330
- ```
331
 
332
- <!--
333
- ## Glossary
334
 
335
- *Clearly define terms in order to be accessible across audiences.*
336
- -->
337
 
338
- <!--
339
- ## Model Card Authors
340
 
341
- *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
342
- -->
343
 
344
- <!--
345
- ## Model Card Contact
346
 
347
- *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
348
- -->
 
8
  metrics:
9
  - metric
10
  widget:
11
+ - text: A combined 20 million people per year die of smoking and hunger, so authorities
12
+ can't seem to feed people and they allow you to buy cigarettes but we are facing
13
+ another lockdown for a virus that has a 99.5% survival rate!!! THINK PEOPLE. LOOK
14
+ AT IT LOGICALLY WITH YOUR OWN EYES.
15
+ - text: Scientists do not agree on the consequences of climate change, nor is there
16
+ any consensus on that subject. The predictions on that from are just ascientific
17
+ speculation. Bring on the warming."
18
+ - text: If Tam is our "top doctor"....I am going back to leaches and voodoo...just
19
+ as much science in that as the crap she spouts
20
+ - text: "Can she skip school by herself and sit infront of parliament? \r\n Fake emotions\
21
+ \ and just a good actor."
22
+ - text: my dad had huge ones..so they may be real..
23
  pipeline_tag: text-classification
24
  inference: false
25
  base_model: sentence-transformers/paraphrase-mpnet-base-v2
 
35
  split: test
36
  metrics:
37
  - type: metric
38
+ value: 0.688144336139226
39
  name: Metric
40
  ---
41
 
42
+ # Computational Analysis of Communicative Acts for Understanding Crisis News Comment Discourses
43
 
44
+ The official trained models for **"Computational Analysis of Communicative Acts for Understanding Crisis News Comment Discourses"**.
45
 
46
+ This model is based on **SetFit** ([SetFit: Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)) and uses the **sentence-transformers/paraphrase-mpnet-base-v2** pretrained model. It has been fine-tuned on our **crisis narratives dataset**.
47
 
48
+ ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49
 
50
+ ### Model Information
 
51
 
52
+ - **Architecture:** SetFit with sentence-transformers/paraphrase-mpnet-base-v2
53
+ - **Task:** Multi-label classification for communicative act actions
54
+ - **Classes:**
55
+ - `informing statement`
56
+ - `challenge`
57
+ - `rejection`
58
+ - `appreciation`
59
+ - `request`
60
+ - `question`
61
+ - `acceptance`
62
+ - `apology`
63
 
64
+ ---
65
 
66
+ ### How to Use the Model
 
 
 
67
 
68
+ You can find the code to fine-tune this model and detailed instructions in the following GitHub repository:
69
+ [Acts in Crisis Narratives - SetFit Fine-Tuning Notebook](https://github.com/Aalto-CRAI-CIS/Acts-in-crisis-narratives/blob/main/few_shot_learning/SetFit.ipynb)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70
 
71
+ #### Steps to Load and Use the Model:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72
 
73
+ 1. Install the SetFit library:
74
+ ```bash
75
+ pip install setfit
76
+ ```
77
+
78
+ 2. Load the model and run inference:
79
+ ```python
80
+ from setfit import SetFitModel
81
 
82
+ # Download from the 🤗 Hub
83
+ model = SetFitModel.from_pretrained("CrisisNarratives/setfit-8classes-multi_label")
84
+
85
+ # Run inference
86
+ preds = model("I'm sorry.")
87
+ ```
88
 
89
+ For detailed instructions, refer to the GitHub repository linked above.
 
 
 
 
 
 
 
 
 
 
 
 
90
 
91
+ ---
 
92
 
93
+ ### Citation
 
94
 
95
+ If you use this model in your work, please cite:
 
96
 
97
+ ##### TO BE ADDED.
 
98
 
99
+ ### Questions or Feedback?
 
100
 
101
+ For questions or feedback, please reach out via our [contact form](mailto:faezeghorbanpour96@example.com).