Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Enhanced-BGE-M3-with-CLPL-and-MoE
|
2 |
+
|
3 |
+
This repository provides the code for applying Contrastive Learning Penalty Loss (CLPL) and Mixture of Experts (MoE) to the BGE-M3 text embedding model for enhanced information retrieval performance.
|
4 |
+
|
5 |
+
## Contrastive Learning Penalty Loss (CLPL)
|
6 |
+
|
7 |
+
CLPL is a novel loss function designed to address the limitations of existing contrastive learning methods for improved performance in information retrieval tasks. It incorporates a penalty term that encourages the model to learn more discriminative representations by considering the similarity between negative samples and their corresponding queries.
|
8 |
+
|
9 |
+
The CLPL loss function is defined as follows:
|
10 |
+
|
11 |
+

|
12 |
+
|
13 |
+
where:
|
14 |
+
|
15 |
+
* h<sub>i</sub>: The embedding of the query for the i-th instance.
|
16 |
+
* h<sub>i</sub><sup>+</sup>: The embedding of the positive sample for the i-th instance.
|
17 |
+
* H<sup>'</sup>: The set of negative samples for the i-th instance.
|
18 |
+
* h<sup>'</sup>: The embedding of the negative sample's query.
|
19 |
+
* H<sup>*</sup>: the set of positive queries for the documents corresponding to the negative samples
|
20 |
+
* sim(a, b): The cosine similarity function between embeddings a and b.
|
21 |
+
* 蟿: The temperature parameter.
|
22 |
+
* 位: The balancing parameter between the contrastive loss and the penalty term.
|
23 |
+
|
24 |
+
The difference between Contrastive Learning Loss and Contrastive Learning Penalty Loss:
|
25 |
+
|
26 |
+

|
27 |
+
|
28 |
+
## Specs
|
29 |
+
|
30 |
+
- Model
|
31 |
+
|
32 |
+
| Model Name | Introduction |
|
33 |
+
|---|---|
|
34 |
+
| [bge-m3-ko-CLPL-interMoE](https://huggingface.co/CreaLabs/bge-m3-ko-CLPL-interMoE) | This model applies CLPL and MoE, trained on the MIRACL Korean training dataset. MoE is applied to the intermediate layer, and only the MoE layers were trained during fine-tuning. |
|
35 |
+
| [bge-m3-fa-CLPL-interMoE](https://huggingface.co/CreaLabs/bge-m3-fa-CLPL-interMoE) | This model applies CLPL and MoE, trained on the MIRACL Persian training dataset. MoE is applied to the intermediate layer, and only the MoE layers were trained during fine-tuning. |
|
36 |
+
| [bge-m3-hi-CLPL-interMoE](https://huggingface.co/CreaLabs/bge-m3-hi-CLPL-interMoE) | This model applies CLPL and MoE, trained on the MIRACL Hindi training dataset. MoE is applied to the intermediate layer, and only the MoE layers were trained during fine-tuning. |
|
37 |
+
|
38 |
+
- Data
|
39 |
+
|
40 |
+
Performing negative sampling using the ANCE methodology and generating negative sample's positive queries through the Gemini 1.5 Pro model, which are required for CLPL.
|
41 |
+
|
42 |
+
| Dataset | Introduction |
|
43 |
+
|---|---|
|
44 |
+
| [ko_CLPL_train_data](https://github.com/Dream-Forge-Studios/Enhanced-BGE-M3-with-CLPL-and-MoE/blob/main/data/ko_CLPL_train_data.jsonl) | MIRACL Korean CLPL training dataset |
|
45 |
+
| [fa_CLPL_train_data](https://github.com/Dream-Forge-Studios/Enhanced-BGE-M3-with-CLPL-and-MoE/blob/main/data/fa_CLPL_train_data.jsonl) | MIRACL Persian CLPL training dataset |
|
46 |
+
| [hi_CLPL_train_data](https://github.com/Dream-Forge-Studios/Enhanced-BGE-M3-with-CLPL-and-MoE/blob/main/data/hi_CLPL_train_data.jsonl) | MIRACL Hindi CLPL training dataset |
|
47 |
+
|
48 |
+
## Usage
|
49 |
+
|
50 |
+
Install:
|
51 |
+
|
52 |
+
- train
|
53 |
+
|
54 |
+
git clone https://github.com/Dream-Forge-Studios/Enhanced-BGE-M3-with-CLPL-and-MoE.git
|
55 |
+
pip install -e .
|
56 |
+
pip install transformers==4.45.2
|
57 |
+
pip install sentencepiece
|
58 |
+
pip install protobuf
|
59 |
+
pip install simple_parsing
|
60 |
+
|
61 |
+
- evalution
|
62 |
+
|
63 |
+
pip install -U FlagEmbedding
|
64 |
+
pip install sentencepiece
|
65 |
+
pip install protobuf
|
66 |
+
pip install faiss-cpu
|
67 |
+
pip install faiss-gpu
|
68 |
+
pip install nmslib
|
69 |
+
pip install pyserini==0.22.1
|
70 |
+
pip install peft
|
71 |
+
pip install "numpy<2"
|
72 |
+
pip install --upgrade datasets
|
73 |
+
pip install simple_parsing
|
74 |
+
|
75 |
+
Execution:
|
76 |
+
|
77 |
+
- train
|
78 |
+
|
79 |
+
python run.py --output_dir CreaLabs/bge-m3-fa-CLPL-outputMoE --model_name_or_path BAAI/bge-m3 --train_data ./train_data --learning_rate 1e-5 --fp16 y --num_train_epochs 2 --per_device_train_batch_size 1 --gradient_accumulation_steps 4 --dataloader_drop_last True --normlized True --temperature 0.02 --query_max_len 128 --passage_max_len 512 --train_group_size 5 --logging_steps 10 --same_task_within_batch True --unified_finetuning False --use_self_distill False --only_train intermediate --moe intermediate --num_experts 2 --num_experts_per_tok 1
|
80 |
+
|
81 |
+
- evalution
|
82 |
+
|
83 |
+
python step0-generate_embedding.py --encoder CreaLabs/bge-m3-fa-CLPL-outputMoE --languages ko --index_save_dir ./corpus-index --max_passage_length 8192 --batch_size 4 --fp16 --pooling_method cls --normalize_embeddings True --moe intermediate
|
84 |
+
python step1-search_results.py --encoder CreaLabs/bge-m3-fa-CLPL-outputMoE --languages ko fa hi --index_save_dir ./corpus-index --result_save_dir /data/js/search_results --threads 4 --hits 20 --pooling_method cls --normalize_embeddings True --add_instruction False --moe intermediate
|
85 |
+
python step2-eval_dense_mldr.py --encoder CreaLabs/bge-m3-fa-CLPL-outputMoE --languages ko --search_result_save_dir ./search_results --qrels_dir ./qrels --eval_result_save_dir ./eval_results --metrics ndcg@5 ndcg@10 --pooling_method cls --normalize_embeddings True
|
86 |
+
|
87 |
+
|
88 |
+
## Evaluation
|
89 |
+
|
90 |
+

|
91 |
+
|
92 |
+
## Citation
|
93 |
+
|
94 |
+
@misc{
|
95 |
+
title={Efficient Fine-tuning Methodology of Text Embedding Models for Information Retrieval: Contrastive Learning Penalty Loss (CLPL)},
|
96 |
+
author={Jeongsu YU},
|
97 |
+
year={2024},
|
98 |
+
eprint={},
|
99 |
+
archivePrefix={},
|
100 |
+
primaryClass={cs.CL}
|
101 |
+
}
|