Model save
Browse files
README.md
CHANGED
|
@@ -18,8 +18,14 @@ should probably proofread and complete it, then remove this comment. -->
|
|
| 18 |
|
| 19 |
This model is a fine-tuned version of [bert-base-multilingual-uncased](https://huggingface.co/bert-base-multilingual-uncased) on an unknown dataset.
|
| 20 |
It achieves the following results on the evaluation set:
|
| 21 |
-
- Loss: 0.
|
| 22 |
-
- Accuracy: 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
## Model description
|
| 25 |
|
|
@@ -44,15 +50,14 @@ The following hyperparameters were used during training:
|
|
| 44 |
- seed: 42
|
| 45 |
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
| 46 |
- lr_scheduler_type: linear
|
| 47 |
-
- num_epochs:
|
| 48 |
|
| 49 |
### Training results
|
| 50 |
|
| 51 |
-
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
| 52 |
-
|
| 53 |
-
| 0.
|
| 54 |
-
| 0.
|
| 55 |
-
| 0.0956 | 3.0 | 1596 | 0.4295 | 0.8925 |
|
| 56 |
|
| 57 |
|
| 58 |
### Framework versions
|
|
|
|
| 18 |
|
| 19 |
This model is a fine-tuned version of [bert-base-multilingual-uncased](https://huggingface.co/bert-base-multilingual-uncased) on an unknown dataset.
|
| 20 |
It achieves the following results on the evaluation set:
|
| 21 |
+
- Loss: 0.3208
|
| 22 |
+
- Accuracy: 0.8845
|
| 23 |
+
- Precision Macro: 0.8801
|
| 24 |
+
- Recall Macro: 0.8750
|
| 25 |
+
- F1 Macro: 0.8772
|
| 26 |
+
- Precision Weighted: 0.8838
|
| 27 |
+
- Recall Weighted: 0.8845
|
| 28 |
+
- F1 Weighted: 0.8838
|
| 29 |
|
| 30 |
## Model description
|
| 31 |
|
|
|
|
| 50 |
- seed: 42
|
| 51 |
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
| 52 |
- lr_scheduler_type: linear
|
| 53 |
+
- num_epochs: 2
|
| 54 |
|
| 55 |
### Training results
|
| 56 |
|
| 57 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision Macro | Recall Macro | F1 Macro | Precision Weighted | Recall Weighted | F1 Weighted |
|
| 58 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------------:|:------------:|:--------:|:------------------:|:---------------:|:-----------:|
|
| 59 |
+
| 0.7593 | 1.0 | 532 | 0.4117 | 0.8545 | 0.8842 | 0.7863 | 0.8196 | 0.8608 | 0.8545 | 0.8519 |
|
| 60 |
+
| 0.3036 | 2.0 | 1064 | 0.3208 | 0.8845 | 0.8801 | 0.8750 | 0.8772 | 0.8838 | 0.8845 | 0.8838 |
|
|
|
|
| 61 |
|
| 62 |
|
| 63 |
### Framework versions
|