Corran commited on
Commit
e99208a
1 Parent(s): 0e5d273

Add SetFit model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false
7
+ }
README.md ADDED
@@ -0,0 +1,229 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: setfit
3
+ tags:
4
+ - setfit
5
+ - sentence-transformers
6
+ - text-classification
7
+ - generated_from_setfit_trainer
8
+ metrics:
9
+ - accuracy
10
+ widget:
11
+ - text: Further research is needed to develop more effective methods for the detection
12
+ and inhibition of ESBLs in clinical settings.
13
+ - text: Although the phosphomolybdenum method presents high accuracy and precision
14
+ for vitamin E quantitation, its applicability to other antioxidants may require
15
+ further investigation.
16
+ - text: The persistent inflammation observed in Interleukin-10-deficient mice provides
17
+ insight into the role of this cytokine in maintaining intestinal homeostasis and
18
+ highlights the potential implications for human diseases, such as inflammatory
19
+ bowel syndrome.
20
+ - text: The proposed algorithms in this paper utilize Hamilton-Jacobi formulations
21
+ to calculate the front propagation speed, which depends on the curvature of the
22
+ front.
23
+ - text: The IC50 values obtained from the semiautomated microdilution assay suggest
24
+ that artesunate and dihydroartemisinin exhibit comparable antimalarial activity
25
+ against the Plasmodium falciparum strains tested.
26
+ pipeline_tag: text-classification
27
+ inference: true
28
+ base_model: kaisugi/scitoricsbert
29
+ model-index:
30
+ - name: SetFit with kaisugi/scitoricsbert
31
+ results:
32
+ - task:
33
+ type: text-classification
34
+ name: Text Classification
35
+ dataset:
36
+ name: Unknown
37
+ type: unknown
38
+ split: test
39
+ metrics:
40
+ - type: accuracy
41
+ value: 0.8833333333333333
42
+ name: Accuracy
43
+ ---
44
+
45
+ # SetFit with kaisugi/scitoricsbert
46
+
47
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [kaisugi/scitoricsbert](https://huggingface.co/kaisugi/scitoricsbert) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
48
+
49
+ The model has been trained using an efficient few-shot learning technique that involves:
50
+
51
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
52
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
53
+
54
+ ## Model Details
55
+
56
+ ### Model Description
57
+ - **Model Type:** SetFit
58
+ - **Sentence Transformer body:** [kaisugi/scitoricsbert](https://huggingface.co/kaisugi/scitoricsbert)
59
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
60
+ - **Maximum Sequence Length:** 512 tokens
61
+ - **Number of Classes:** 12 classes
62
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
63
+ <!-- - **Language:** Unknown -->
64
+ <!-- - **License:** Unknown -->
65
+
66
+ ### Model Sources
67
+
68
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
69
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
70
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
71
+
72
+ ### Model Labels
73
+ | Label | Examples |
74
+ |:----------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
75
+ | Aims | <ul><li>'This study aims to provide an in-depth analysis of the impact of Coronavirus Disease 2019 (COVID-19) on Italy, focusing on the early stages of the outbreak and the subsequent government response.'</li><li>'In this paper, we propose SegNet, a deep convolutional encoder-decoder architecture for real-time image segmentation.'</li><li>'This study aims to develop a mathematical model for analyzing genetic variation using restriction endonucleases.'</li></ul> |
76
+ | Background | <ul><li>'Previous studies have demonstrated that statins, including pravastatin, can reduce the risk of coronary events in patients with elevated cholesterol levels. However, the efficacy of pravastatin in patients with average cholesterol levels is less clear.'</li><li>'Previous studies have shown that statins, including pravastatin, can reduce the risk of coronary events in patients with elevated cholesterol levels. However, this study investigates the effect of pravastatin on patients with average cholesterol levels.'</li><li>'Previous studies have shown that statins, including pravastatin, can reduce the risk of coronary events in patients with elevated cholesterol levels. However, this trial investigates the effect of pravastatin on patients with average cholesterol levels.'</li></ul> |
77
+ | Hypothesis | <ul><li>'Despite having average cholesterol levels, patients who received Pravastatin experienced a significant reduction in coronary events, suggesting a potential role for statins in preventing cardiovascular events beyond cholesterol level management in internal medicine.'</li><li>'This prospective observational study aimed to investigate the association between glycaemia levels and the risk of developing macrovascular and microvascular complications in individuals with type 2 diabetes, as previously identified in the UKPDS 35 study.'</li><li>'The results suggest that self-regulatory skills, particularly in the area of attention, significantly impact academic performance in elementary school students.'</li></ul> |
78
+ | Implications | <ul><li>'From 1995 to 1998, the UK Prospective Diabetes Study (UKPDS) 35 observed a significant association between higher glycaemia levels and increased risk of both macrovascular and microvascular complications in patients with type 2 diabetes.'</li><li>'The UKPDS 35 study provides robust evidence that every 1 mmol/L increase in HbA1c is associated with a 25% increased risk of macrovascular events and a 37% increased risk of microvascular complications in patients with type 2 diabetes, highlighting the importance of strict glycaemic control in internal medicine.'</li><li>"This study provides valuable insights into the early dynamics of the COVID-19 outbreak in Italy, contributing to the understanding of the disease's transmission patterns and impact on public health."</li></ul> |
79
+ | Importance | <ul><li>'Stroke and transient ischemic attack (TIA) are leading causes of long-term disability and mortality in internal medicine, with an estimated 15 million survivors worldwide.'</li><li>'The accurate assessment of insulin resistance and beta-cell function is crucial in the diagnosis and management of various metabolic disorders, including type 2 diabetes and metabolic syndrome.'</li><li>'The COVID-19 outbreak in Italy, which began in late February 2020, quickly became one of the most severe epidemic hotspots in Europe.'</li></ul> |
80
+ | Limitations | <ul><li>'However, it is important to note that the Homeostasis Model Assessment (HOMA) index does not directly measure insulin sensitivity or β-cell function, but rather provides an estimate based on fasting plasma glucose and insulin concentrations.'</li><li>'Despite providing a useful estimate of insulin resistance and beta-cell function, the Homeostasis Model Assessment has limitations in its applicability to individuals with extreme glucose or insulin levels, as well as those with certain diseases such as liver disease or pregnancy.'</li><li>'Despite the large sample size and long follow-up period, the observational nature of the study limits the ability to establish causality between glycaemia and the observed complications in type 2 diabetes.'</li></ul> |
81
+ | Method | <ul><li>'The study employed a randomized, double-blind, placebo-controlled design to investigate the effect of Pravastatin on coronary events in patients with average cholesterol levels.'</li><li>'Patients with a history of myocardial infarction and an average cholesterol level between 180 and 240 mg/dL were included in the study.'</li><li>'The study aimed to assess the impact of Pravastatin administration on the incidence of coronary events in internal medicine patients with average cholesterol levels.'</li></ul> |
82
+ | None | <ul><li>'Pravastatin is a statin drug commonly used in the treatment of hypercholesterolemia, specifically to lower low-density lipoprotein (LDL) cholesterol levels and reduce the risk of cardiovascular events in internal medicine.'</li><li>'The study enrolled patients with a recent myocardial infarction and an average cholesterol level, who were then randomly assigned to receive either pravastatin or placebo.'</li><li>'This systematic review and meta-analysis aimed to assess the efficacy and safety of dual antiplatelet therapy with aspirin and clopidogrel in the secondary prevention of stroke and transient ischemic attack in the field of internal medicine.'</li></ul> |
83
+ | Purpose | <ul><li>'This study investigates the impact of Pravastatin on reducing coronary events in internal medicine patients with average cholesterol levels after a myocardial infarction.'</li><li>'This systematic review and meta-analysis aimed to assess the efficacy and safety of dual antiplatelet therapy with aspirin and clopidogrel in the secondary prevention of stroke and transient ischemic attack in internal medicine.'</li><li>'This study aims to evaluate the effectiveness of the Homeostasis Model Assessment (HOMA) in estimating insulin resistance and beta-cell function in internal medicine patients, addressing the need for a simple and widely applicable method for diagnosing and monitoring these conditions.'</li></ul> |
84
+ | Reccomendations | <ul><li>'Further studies are needed to investigate the optimal duration of dual antiplatelet therapy in secondary prevention of stroke and transient ischemic attack, as well as the role of individual patient characteristics in determining the most effective treatment regimen.'</li><li>'Further research is warranted to explore the underlying mechanisms linking glycaemia to macrovascular and microvascular complications in type 2 diabetes, particularly in multi-ethnic populations.'</li><li>'Further studies are needed to investigate the potential role of IL-6 signaling in the prevention of bone loss in postmenopausal women.'</li></ul> |
85
+ | Result | <ul><li>'Despite having average cholesterol levels, patients treated with Pravastatin did not experience a significant reduction in coronary events compared to the placebo group.'</li><li>'In interviews with patients who experienced a reduction in coronary events after Pravastatin treatment, themes included improved energy levels and increased confidence in managing their heart health.'</li><li>'The study found that Pravastatin significantly reduced the risk of coronary events in patients with average cholesterol levels, consistent with previous research suggesting that statins benefit a wider population beyond those with hypercholesterolemia.'</li></ul> |
86
+ | Uncertainty | <ul><li>'Despite the widespread use of pravastatin in post-myocardial infarction patients with average cholesterol levels, the evidence regarding its impact on coronary events remains inconclusive and sometimes contradictory.'</li><li>'Despite the findings of this study showing a reduction in coronary events with Pravastatin use in patients with average cholesterol levels, contrasting evidence exists suggesting no significant benefit in similar patient populations (Miller et al., 2018).'</li><li>'Despite the proven benefits of dual antiplatelet therapy with aspirin and clopidogrel in the secondary prevention of cardiovascular events, particularly in coronary artery disease, there is a paucity of data specifically addressing its use in stroke or transient ischemic attack (TIA) patients.'</li></ul> |
87
+
88
+ ## Evaluation
89
+
90
+ ### Metrics
91
+ | Label | Accuracy |
92
+ |:--------|:---------|
93
+ | **all** | 0.8833 |
94
+
95
+ ## Uses
96
+
97
+ ### Direct Use for Inference
98
+
99
+ First install the SetFit library:
100
+
101
+ ```bash
102
+ pip install setfit
103
+ ```
104
+
105
+ Then you can load this model and run inference.
106
+
107
+ ```python
108
+ from setfit import SetFitModel
109
+
110
+ # Download from the 🤗 Hub
111
+ model = SetFitModel.from_pretrained("Corran/SciGenSetfit4")
112
+ # Run inference
113
+ preds = model("Further research is needed to develop more effective methods for the detection and inhibition of ESBLs in clinical settings.")
114
+ ```
115
+
116
+ <!--
117
+ ### Downstream Use
118
+
119
+ *List how someone could finetune this model on their own dataset.*
120
+ -->
121
+
122
+ <!--
123
+ ### Out-of-Scope Use
124
+
125
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
126
+ -->
127
+
128
+ <!--
129
+ ## Bias, Risks and Limitations
130
+
131
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
132
+ -->
133
+
134
+ <!--
135
+ ### Recommendations
136
+
137
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
138
+ -->
139
+
140
+ ## Training Details
141
+
142
+ ### Training Set Metrics
143
+ | Training set | Min | Median | Max |
144
+ |:-------------|:----|:--------|:----|
145
+ | Word count | 11 | 28.3767 | 60 |
146
+
147
+ | Label | Training Sample Count |
148
+ |:----------------|:----------------------|
149
+ | Aims | 100 |
150
+ | Background | 100 |
151
+ | Hypothesis | 100 |
152
+ | Implications | 100 |
153
+ | Importance | 100 |
154
+ | Limitations | 100 |
155
+ | Method | 100 |
156
+ | None | 100 |
157
+ | Purpose | 100 |
158
+ | Reccomendations | 100 |
159
+ | Result | 100 |
160
+ | Uncertainty | 100 |
161
+
162
+ ### Training Hyperparameters
163
+ - batch_size: (256, 256)
164
+ - num_epochs: (1, 1)
165
+ - max_steps: -1
166
+ - sampling_strategy: oversampling
167
+ - num_iterations: 20
168
+ - body_learning_rate: (2e-05, 1e-05)
169
+ - head_learning_rate: 0.01
170
+ - loss: CosineSimilarityLoss
171
+ - distance_metric: cosine_distance
172
+ - margin: 0.25
173
+ - end_to_end: False
174
+ - use_amp: False
175
+ - warmup_proportion: 0.1
176
+ - seed: 42
177
+ - eval_max_steps: -1
178
+ - load_best_model_at_end: False
179
+
180
+ ### Training Results
181
+ | Epoch | Step | Training Loss | Validation Loss |
182
+ |:------:|:----:|:-------------:|:---------------:|
183
+ | 0.0053 | 1 | 0.2248 | - |
184
+ | 0.2660 | 50 | 0.1239 | - |
185
+ | 0.5319 | 100 | 0.1105 | - |
186
+ | 0.7979 | 150 | 0.0665 | - |
187
+
188
+ ### Framework Versions
189
+ - Python: 3.10.12
190
+ - SetFit: 1.0.3
191
+ - Sentence Transformers: 2.2.2
192
+ - Transformers: 4.36.2
193
+ - PyTorch: 2.1.0+cu121
194
+ - Datasets: 2.16.1
195
+ - Tokenizers: 0.15.0
196
+
197
+ ## Citation
198
+
199
+ ### BibTeX
200
+ ```bibtex
201
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
202
+ doi = {10.48550/ARXIV.2209.11055},
203
+ url = {https://arxiv.org/abs/2209.11055},
204
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
205
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
206
+ title = {Efficient Few-Shot Learning Without Prompts},
207
+ publisher = {arXiv},
208
+ year = {2022},
209
+ copyright = {Creative Commons Attribution 4.0 International}
210
+ }
211
+ ```
212
+
213
+ <!--
214
+ ## Glossary
215
+
216
+ *Clearly define terms in order to be accessible across audiences.*
217
+ -->
218
+
219
+ <!--
220
+ ## Model Card Authors
221
+
222
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
223
+ -->
224
+
225
+ <!--
226
+ ## Model Card Contact
227
+
228
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
229
+ -->
config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/root/.cache/torch/sentence_transformers/kaisugi_scitoricsbert",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 768,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 3072,
13
+ "layer_norm_eps": 1e-12,
14
+ "max_position_embeddings": 512,
15
+ "model_type": "bert",
16
+ "num_attention_heads": 12,
17
+ "num_hidden_layers": 12,
18
+ "pad_token_id": 0,
19
+ "position_embedding_type": "absolute",
20
+ "torch_dtype": "float32",
21
+ "transformers_version": "4.36.2",
22
+ "type_vocab_size": 2,
23
+ "use_cache": true,
24
+ "vocab_size": 31090
25
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.2.2",
4
+ "transformers": "4.36.2",
5
+ "pytorch": "2.1.0+cu121"
6
+ }
7
+ }
config_setfit.json ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "normalize_embeddings": false,
3
+ "labels": [
4
+ "Aims",
5
+ "Background",
6
+ "Hypothesis",
7
+ "Implications",
8
+ "Importance",
9
+ "Limitations",
10
+ "Method",
11
+ "None",
12
+ "Purpose",
13
+ "Reccomendations",
14
+ "Result",
15
+ "Uncertainty"
16
+ ]
17
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8e7b341f8e3b8fedb613b442497d31738e71ba61a696c7f6c6afb4d5f9356ed5
3
+ size 439696224
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7e64694fc9f6f4206f0376da8dbcc8dafcf28de90cb1968623575fa434fb57f6
3
+ size 75367
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "101": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "102": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "103": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "104": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "max_length": 128,
50
+ "model_max_length": 1000000000000000019884624838656,
51
+ "never_split": null,
52
+ "pad_token": "[PAD]",
53
+ "sep_token": "[SEP]",
54
+ "stride": 0,
55
+ "strip_accents": null,
56
+ "tokenize_chinese_chars": true,
57
+ "tokenizer_class": "BertTokenizer",
58
+ "truncation_side": "right",
59
+ "truncation_strategy": "longest_first",
60
+ "unk_token": "[UNK]"
61
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff