Add SetFit model
Browse files- .gitattributes +1 -0
- 1_Pooling/config.json +7 -0
- README.md +231 -0
- config.json +29 -0
- config_sentence_transformers.json +7 -0
- config_setfit.json +14 -0
- model.safetensors +3 -0
- model_head.pkl +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- sentencepiece.bpe.model +3 -0
- special_tokens_map.json +15 -0
- tokenizer.json +3 -0
- tokenizer_config.json +61 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
1_Pooling/config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false
|
7 |
+
}
|
README.md
ADDED
@@ -0,0 +1,231 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: setfit
|
3 |
+
tags:
|
4 |
+
- setfit
|
5 |
+
- sentence-transformers
|
6 |
+
- text-classification
|
7 |
+
- generated_from_setfit_trainer
|
8 |
+
metrics:
|
9 |
+
- accuracy
|
10 |
+
widget:
|
11 |
+
- text: considering the use of so-called “fractional citations” in which one divides
|
12 |
+
the number of citations associated with a given paper by the number of authors
|
13 |
+
on that paper [33–38];
|
14 |
+
- text: Indeed, this is only one of a number of such practical inconsistencies inherent
|
15 |
+
in the traditional h-index; other similar inconsistencies are discussed in Refs.
|
16 |
+
[3, 4].
|
17 |
+
- text: One of the referees recommends mentioning Quesada (2008) as another characterization
|
18 |
+
of the Hirsch index relying as well on monotonicity.
|
19 |
+
- text: considering the use of so-called “fractional citations” in which one divides
|
20 |
+
the number of citations associated with a given paper by the number of authors
|
21 |
+
on that paper [33–38];
|
22 |
+
- text: increasing the weighting of very highly-cited papers, either through the introduction
|
23 |
+
of intrinsic weighting factors or the development of entirely new indices which
|
24 |
+
mix the h-index with other more traditional indices (such as total citation count)
|
25 |
+
[3, 4, 7, 8, 26–32];
|
26 |
+
pipeline_tag: text-classification
|
27 |
+
inference: true
|
28 |
+
base_model: sentence-transformers/paraphrase-multilingual-mpnet-base-v2
|
29 |
+
model-index:
|
30 |
+
- name: SetFit with sentence-transformers/paraphrase-multilingual-mpnet-base-v2
|
31 |
+
results:
|
32 |
+
- task:
|
33 |
+
type: text-classification
|
34 |
+
name: Text Classification
|
35 |
+
dataset:
|
36 |
+
name: Unknown
|
37 |
+
type: unknown
|
38 |
+
split: test
|
39 |
+
metrics:
|
40 |
+
- type: accuracy
|
41 |
+
value: 0.6111111111111112
|
42 |
+
name: Accuracy
|
43 |
+
---
|
44 |
+
|
45 |
+
# SetFit with sentence-transformers/paraphrase-multilingual-mpnet-base-v2
|
46 |
+
|
47 |
+
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
|
48 |
+
|
49 |
+
The model has been trained using an efficient few-shot learning technique that involves:
|
50 |
+
|
51 |
+
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
|
52 |
+
2. Training a classification head with features from the fine-tuned Sentence Transformer.
|
53 |
+
|
54 |
+
## Model Details
|
55 |
+
|
56 |
+
### Model Description
|
57 |
+
- **Model Type:** SetFit
|
58 |
+
- **Sentence Transformer body:** [sentence-transformers/paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2)
|
59 |
+
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
|
60 |
+
- **Maximum Sequence Length:** 128 tokens
|
61 |
+
- **Number of Classes:** 9 classes
|
62 |
+
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
|
63 |
+
<!-- - **Language:** Unknown -->
|
64 |
+
<!-- - **License:** Unknown -->
|
65 |
+
|
66 |
+
### Model Sources
|
67 |
+
|
68 |
+
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
|
69 |
+
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
|
70 |
+
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
71 |
+
|
72 |
+
### Model Labels
|
73 |
+
| Label | Examples |
|
74 |
+
|:-----------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
75 |
+
| ccro:BasedOn | <ul><li>'The axiomatizations presented in Quesada (2010, 2011) also dispense with strong monotonicity.'</li></ul> |
|
76 |
+
| ccro:Basedon | <ul><li>'A formal mathematical description of the h-index introduced by Hirsch (2005)'</li><li>'Woeginger (2008a, b) and Quesada (2009, 2010) have already suggested characterizations of the Hirsch index'</li><li>'Woeginger (2008a, b) and Quesada (2009, 2010) have already suggested characterizations of the Hirsch index'</li></ul> |
|
77 |
+
| ccro:Compare | <ul><li>'Instead, a variety of studies [8, 9] have shown that the h index by and large agrees with other objective and subjective measures of scientific quality in a variety of different disciplines (10–15),'</li><li>'Instead, a variety of studies [8, 9] have shown that the h index by and large agrees with other objective and subjective measures of scientific quality in a variety of different disciplines (10–15),'</li><li>'Instead, a variety of studies [8, 9] have shown that the h index by and large agrees with other objective and subjective measures of scientific quality in a variety of different disciplines (10–15),'</li></ul> |
|
78 |
+
| ccro:Contrast | <ul><li>'Hirsch (2005) argues that two individuals with similar Hirsch-index are comparable in terms of their overall scientific impact, even if their total number of papers or their total number of citations is very different.'</li><li>'The three differ from Woeginger’s (2008a) characterization in requiring fewer axioms (three instead of five)'</li><li>'Marchant (2009), instead of characterizing the index itself, characterizes the ranking that the Hirsch index induces on outputs.'</li></ul> |
|
79 |
+
| ccro:Criticize | <ul><li>'The h-index does not take into account that some papers may have extraordinarily many citations, and the g-index tries to compensate for this; see also Egghe (2006b) and Tol (2008).'</li><li>'The h-index does not take into account that some papers may have extraordinarily many citations, and the g-index tries to compensate for this; see also Egghe (2006b) and Tol (2008).'</li><li>'Woeginger (2008a, p. 227) stresses that his axioms should be interpreted within the context of MON.'</li></ul> |
|
80 |
+
| ccro:Discuss | <ul><li>'The relation between N and h will depend on the detailed form of the particular distribution (HI0501-01)'</li><li>'As discussed by Redner (HI0501-03), most papers earn their citations over a limited period of popularity and then they are no longer cited.'</li><li>'It is also possible that papers "drop out" and then later come back into the h count, as would occur for the kind of papers termed "sleeping beauties" (HI0501-04).'</li></ul> |
|
81 |
+
| ccro:Extend | <ul><li>'In [3] the analogous formula for the g-index has been proved'</li></ul> |
|
82 |
+
| ccro:Incorporate | <ul><li>'In this paper, we provide an axiomatic characterization of the Hirsch-index, in very much the same spirit as Arrow (1950, 1951), May (1952), and Moulin (1988) did for numerous other problems in mathematical decision making.'</li><li>'In this paper, we provide an axiomatic characterization of the Hirsch-index, in very much the same spirit as Arrow (1950, 1951), May (1952), and Moulin (1988) did for numerous other problems in mathematical decision making.'</li><li>'In this paper, we provide an axiomatic characterization of the Hirsch-index, in very much the same spirit as Arrow (1950, 1951), May (1952), and Moulin (1988) did for numerous other problems in mathematical decision making.'</li></ul> |
|
83 |
+
| ccro:Negate | <ul><li>'Recently, Lehmann et al. (2, 3) have argued that the mean number of citations per paper (nc = Nc/Np) is a superior indicator.'</li><li>'If one chose instead to use as indicator of scientific achievement the mean number of citations per paper [following Lehmann et al. (2, 3)], our results suggest that (as in the stock market) ‘‘past performance is not predictive of future performance.’’'</li><li>'It has been argued in the literature that one drawback of the h index is that it does not give enough ‘‘credit’’ to very highly cited papers, and various modifications have been proposed to correct this, in particular, Egghe’s g index (4), Jin et al.’s AR index (5), and Komulski’s H(2) index (6).'</li></ul> |
|
84 |
+
|
85 |
+
## Evaluation
|
86 |
+
|
87 |
+
### Metrics
|
88 |
+
| Label | Accuracy |
|
89 |
+
|:--------|:---------|
|
90 |
+
| **all** | 0.6111 |
|
91 |
+
|
92 |
+
## Uses
|
93 |
+
|
94 |
+
### Direct Use for Inference
|
95 |
+
|
96 |
+
First install the SetFit library:
|
97 |
+
|
98 |
+
```bash
|
99 |
+
pip install setfit
|
100 |
+
```
|
101 |
+
|
102 |
+
Then you can load this model and run inference.
|
103 |
+
|
104 |
+
```python
|
105 |
+
from setfit import SetFitModel
|
106 |
+
|
107 |
+
# Download from the 🤗 Hub
|
108 |
+
model = SetFitModel.from_pretrained("Corran/CCRO2")
|
109 |
+
# Run inference
|
110 |
+
preds = model("One of the referees recommends mentioning Quesada (2008) as another characterization of the Hirsch index relying as well on monotonicity.")
|
111 |
+
```
|
112 |
+
|
113 |
+
<!--
|
114 |
+
### Downstream Use
|
115 |
+
|
116 |
+
*List how someone could finetune this model on their own dataset.*
|
117 |
+
-->
|
118 |
+
|
119 |
+
<!--
|
120 |
+
### Out-of-Scope Use
|
121 |
+
|
122 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
123 |
+
-->
|
124 |
+
|
125 |
+
<!--
|
126 |
+
## Bias, Risks and Limitations
|
127 |
+
|
128 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
129 |
+
-->
|
130 |
+
|
131 |
+
<!--
|
132 |
+
### Recommendations
|
133 |
+
|
134 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
135 |
+
-->
|
136 |
+
|
137 |
+
## Training Details
|
138 |
+
|
139 |
+
### Training Set Metrics
|
140 |
+
| Training set | Min | Median | Max |
|
141 |
+
|:-------------|:----|:--------|:----|
|
142 |
+
| Word count | 6 | 25.7812 | 53 |
|
143 |
+
|
144 |
+
| Label | Training Sample Count |
|
145 |
+
|:-----------------|:----------------------|
|
146 |
+
| ccro:BasedOn | 1 |
|
147 |
+
| ccro:Basedon | 11 |
|
148 |
+
| ccro:Compare | 21 |
|
149 |
+
| ccro:Contrast | 3 |
|
150 |
+
| ccro:Criticize | 4 |
|
151 |
+
| ccro:Discuss | 37 |
|
152 |
+
| ccro:Extend | 1 |
|
153 |
+
| ccro:Incorporate | 14 |
|
154 |
+
| ccro:Negate | 4 |
|
155 |
+
|
156 |
+
### Training Hyperparameters
|
157 |
+
- batch_size: (60, 60)
|
158 |
+
- num_epochs: (1, 1)
|
159 |
+
- max_steps: -1
|
160 |
+
- sampling_strategy: oversampling
|
161 |
+
- num_iterations: 100
|
162 |
+
- body_learning_rate: (2e-05, 1e-05)
|
163 |
+
- head_learning_rate: 0.01
|
164 |
+
- loss: CosineSimilarityLoss
|
165 |
+
- distance_metric: cosine_distance
|
166 |
+
- margin: 0.25
|
167 |
+
- end_to_end: False
|
168 |
+
- use_amp: False
|
169 |
+
- warmup_proportion: 0.1
|
170 |
+
- seed: 42
|
171 |
+
- eval_max_steps: -1
|
172 |
+
- load_best_model_at_end: False
|
173 |
+
|
174 |
+
### Training Results
|
175 |
+
| Epoch | Step | Training Loss | Validation Loss |
|
176 |
+
|:------:|:----:|:-------------:|:---------------:|
|
177 |
+
| 0.0042 | 1 | 0.2507 | - |
|
178 |
+
| 0.2083 | 50 | 0.0639 | - |
|
179 |
+
| 0.4167 | 100 | 0.0017 | - |
|
180 |
+
| 0.625 | 150 | 0.0016 | - |
|
181 |
+
| 0.8333 | 200 | 0.0059 | - |
|
182 |
+
| 0.0031 | 1 | 0.0051 | - |
|
183 |
+
| 0.1562 | 50 | 0.0005 | - |
|
184 |
+
| 0.3125 | 100 | 0.001 | - |
|
185 |
+
| 0.4688 | 150 | 0.0001 | - |
|
186 |
+
| 0.625 | 200 | 0.0 | - |
|
187 |
+
| 0.7812 | 250 | 0.0 | - |
|
188 |
+
| 0.9375 | 300 | 0.0001 | - |
|
189 |
+
|
190 |
+
### Framework Versions
|
191 |
+
- Python: 3.10.12
|
192 |
+
- SetFit: 1.0.3
|
193 |
+
- Sentence Transformers: 2.2.2
|
194 |
+
- Transformers: 4.35.2
|
195 |
+
- PyTorch: 2.1.0+cu121
|
196 |
+
- Datasets: 2.16.1
|
197 |
+
- Tokenizers: 0.15.0
|
198 |
+
|
199 |
+
## Citation
|
200 |
+
|
201 |
+
### BibTeX
|
202 |
+
```bibtex
|
203 |
+
@article{https://doi.org/10.48550/arxiv.2209.11055,
|
204 |
+
doi = {10.48550/ARXIV.2209.11055},
|
205 |
+
url = {https://arxiv.org/abs/2209.11055},
|
206 |
+
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
|
207 |
+
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
208 |
+
title = {Efficient Few-Shot Learning Without Prompts},
|
209 |
+
publisher = {arXiv},
|
210 |
+
year = {2022},
|
211 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
212 |
+
}
|
213 |
+
```
|
214 |
+
|
215 |
+
<!--
|
216 |
+
## Glossary
|
217 |
+
|
218 |
+
*Clearly define terms in order to be accessible across audiences.*
|
219 |
+
-->
|
220 |
+
|
221 |
+
<!--
|
222 |
+
## Model Card Authors
|
223 |
+
|
224 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
225 |
+
-->
|
226 |
+
|
227 |
+
<!--
|
228 |
+
## Model Card Contact
|
229 |
+
|
230 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
231 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/root/.cache/torch/sentence_transformers/sentence-transformers_paraphrase-multilingual-mpnet-base-v2/",
|
3 |
+
"architectures": [
|
4 |
+
"XLMRobertaModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"gradient_checkpointing": false,
|
11 |
+
"hidden_act": "gelu",
|
12 |
+
"hidden_dropout_prob": 0.1,
|
13 |
+
"hidden_size": 768,
|
14 |
+
"initializer_range": 0.02,
|
15 |
+
"intermediate_size": 3072,
|
16 |
+
"layer_norm_eps": 1e-05,
|
17 |
+
"max_position_embeddings": 514,
|
18 |
+
"model_type": "xlm-roberta",
|
19 |
+
"num_attention_heads": 12,
|
20 |
+
"num_hidden_layers": 12,
|
21 |
+
"output_past": true,
|
22 |
+
"pad_token_id": 1,
|
23 |
+
"position_embedding_type": "absolute",
|
24 |
+
"torch_dtype": "float32",
|
25 |
+
"transformers_version": "4.35.2",
|
26 |
+
"type_vocab_size": 1,
|
27 |
+
"use_cache": true,
|
28 |
+
"vocab_size": 250002
|
29 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "2.0.0",
|
4 |
+
"transformers": "4.7.0",
|
5 |
+
"pytorch": "1.9.0+cu102"
|
6 |
+
}
|
7 |
+
}
|
config_setfit.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"normalize_embeddings": false,
|
3 |
+
"labels": [
|
4 |
+
"ccro:BasedOn",
|
5 |
+
"ccro:Basedon",
|
6 |
+
"ccro:Compare",
|
7 |
+
"ccro:Contrast",
|
8 |
+
"ccro:Criticize",
|
9 |
+
"ccro:Discuss",
|
10 |
+
"ccro:Extend",
|
11 |
+
"ccro:Incorporate",
|
12 |
+
"ccro:Negate"
|
13 |
+
]
|
14 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bfd86da657464c270f76271dc20d7f6d86870d667b769a703ef66e094d02b27d
|
3 |
+
size 1112197096
|
model_head.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:24dc8f4a7425b0125546aa47df2164901e4df9b5eefcf19217364265cb8472d1
|
3 |
+
size 56767
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 128,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
sentencepiece.bpe.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
|
3 |
+
size 5069051
|
special_tokens_map.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "<s>",
|
3 |
+
"cls_token": "<s>",
|
4 |
+
"eos_token": "</s>",
|
5 |
+
"mask_token": {
|
6 |
+
"content": "<mask>",
|
7 |
+
"lstrip": true,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false
|
11 |
+
},
|
12 |
+
"pad_token": "<pad>",
|
13 |
+
"sep_token": "</s>",
|
14 |
+
"unk_token": "<unk>"
|
15 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fa685fc160bbdbab64058d4fc91b60e62d207e8dc60b9af5c002c5ab946ded00
|
3 |
+
size 17083009
|
tokenizer_config.json
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<s>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<pad>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "<unk>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"250001": {
|
36 |
+
"content": "<mask>",
|
37 |
+
"lstrip": true,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"bos_token": "<s>",
|
45 |
+
"clean_up_tokenization_spaces": true,
|
46 |
+
"cls_token": "<s>",
|
47 |
+
"eos_token": "</s>",
|
48 |
+
"mask_token": "<mask>",
|
49 |
+
"max_length": 128,
|
50 |
+
"model_max_length": 512,
|
51 |
+
"pad_to_multiple_of": null,
|
52 |
+
"pad_token": "<pad>",
|
53 |
+
"pad_token_type_id": 0,
|
54 |
+
"padding_side": "right",
|
55 |
+
"sep_token": "</s>",
|
56 |
+
"stride": 0,
|
57 |
+
"tokenizer_class": "XLMRobertaTokenizer",
|
58 |
+
"truncation_side": "right",
|
59 |
+
"truncation_strategy": "longest_first",
|
60 |
+
"unk_token": "<unk>"
|
61 |
+
}
|