ppo-LunarLander-v2 / config.json
CoreyMorris's picture
Lunar Landar V2 first pass 500,000 timesteps
518939d
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7efca12a3d40>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7efca12a3dd0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7efca12a3e60>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7efca12a3ef0>", "_build": "<function ActorCriticPolicy._build at 0x7efca12a3f80>", "forward": "<function ActorCriticPolicy.forward at 0x7efca12aa050>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7efca12aa0e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7efca12aa170>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7efca12aa200>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7efca12aa290>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7efca12aa320>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7efca12f95a0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1662401121.3373034, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADMPjj3WxAA/aMsOvlI+hL5HHja9VkZbvgAAAAAAAAAALUsSvsiPgTt/IjW7gqGXOOPQK70w/l06AACAPwAAgD8N8S2+4RDpukLfeTrSECg33hYwPPfAk7kAAIA/AACAP1oO/b20vOU+UZDKPQ4aAL5awJu9o54QPgAAAAAAAAAAZd+GvsNrRzvWaN87+bHPPBd0J71jKrM9AACAPwAAgD8ixJ++On9yPyqqr74Dnb2+5+ayvunSP70AAAAAAAAAAADupjwK7oA/P/+FvQpLs762Ls89KohBvgAAAAAAAAAAIHdrvsUVkDz7m3m7O253ORbHGb4bZ3q6AACAPwAAgD8AGpa8fESTP7OLwL0j5LW+eAIJPoFYvz0AAAAAAAAAAA0UCz6Fld06LTXxupZAdzvSXJs8Q8RxPAAAgD8AAIA/hhMTvgfNsj58LLO8EcegvjPojr3Ukgi+AAAAAAAAAAAz1t48OPA4P5fTob33gnS+N6tPPZtbBjwAAAAAAAAAADObuDy8NqY/IgNvPsUt9r7s8Aq8UPhmOQAAAAAAAAAA5jowvUgfpLpLhak6ZNoavWCsVrrRoAe+AAAAAAAAgD9aA9i9rm2UumvMiDtwN/A2r5pcOwqZnroAAIA/AACAP7PLJz2ET64/oHUWP8Kqpr7wl+C8W8OnuwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVbRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIlPsdigKkW0CUhpRSlIwBbJRN6AOMAXSUR0B6Bd7v5P/JdX2UKGgGaAloD0MIp1t2iP/HasCUhpRSlGgVS7loFkdAegiuUUwi7nV9lChoBmgJaA9DCK2E7pI4m1VAlIaUUpRoFU3oA2gWR0B6KxcyFfzCdX2UKGgGaAloD0MITu53KArwRECUhpRSlGgVS6JoFkdAejIlb/wRXnV9lChoBmgJaA9DCBdFD3wMvipAlIaUUpRoFUvpaBZHQHpKO0G/vfF1fZQoaAZoCWgPQwhl4etrXQhWwJSGlFKUaBVN5AFoFkdAelAQQL/jsHV9lChoBmgJaA9DCHJvfsNEFFhAlIaUUpRoFU3oA2gWR0B6U7gJkXk6dX2UKGgGaAloD0MIHhhA+FAzW0CUhpRSlGgVTegDaBZHQHqEtmYjSoh1fZQoaAZoCWgPQwjtf4C16gRiQJSGlFKUaBVN6ANoFkdAeoX+r2g3+HV9lChoBmgJaA9DCBYVcTrJ81tAlIaUUpRoFU3oA2gWR0B6h7jo6jnFdX2UKGgGaAloD0MIpb3BFyaDQECUhpRSlGgVTegDaBZHQHqhkMG5c1R1fZQoaAZoCWgPQwjCvTJv1VtHQJSGlFKUaBVN6ANoFkdAeqVKVpsXSHV9lChoBmgJaA9DCFABMJ5BIV5AlIaUUpRoFU3oA2gWR0B6qVsuWa+fdX2UKGgGaAloD0MImwKZnUW0WkCUhpRSlGgVTegDaBZHQHqytI9TxXp1fZQoaAZoCWgPQwiYTus2qDNeQJSGlFKUaBVN6ANoFkdAer0MFlkH2XV9lChoBmgJaA9DCIYcW88Q7FtAlIaUUpRoFU3oA2gWR0B6y3VkMCtBdX2UKGgGaAloD0MI21Axzt+kAUCUhpRSlGgVS+loFkdAetegccU/OnV9lChoBmgJaA9DCF5MM91rG2BAlIaUUpRoFU3oA2gWR0B63Kad+XqrdX2UKGgGaAloD0MIeNUD5iGPM8CUhpRSlGgVS+NoFkdAez1Gpda+vnV9lChoBmgJaA9DCGvvU1Vo519AlIaUUpRoFU3oA2gWR0B7SeOhkAggdX2UKGgGaAloD0MIf/lkxXDlN8CUhpRSlGgVS9xoFkdAe1+IZIg/1XV9lChoBmgJaA9DCEYkCi3r6VhAlIaUUpRoFU3oA2gWR0B7eqaTfR/mdX2UKGgGaAloD0MI3H75ZMVkWUCUhpRSlGgVTegDaBZHQHuBfi97F851fZQoaAZoCWgPQwg57pQO1mFdQJSGlFKUaBVN6ANoFkdAe5eBGQSzxHV9lChoBmgJaA9DCGR1q+ekW0NAlIaUUpRoFU3oA2gWR0B7nMuWa+ewdX2UKGgGaAloD0MIoIzxYfZCTUCUhpRSlGgVTegDaBZHQHugIwRGtp51fZQoaAZoCWgPQwi0Oc5twv0gQJSGlFKUaBVL+mgWR0B7ossK9f1IdX2UKGgGaAloD0MI8bvplh17W0CUhpRSlGgVTegDaBZHQHvPfCAMDwJ1fZQoaAZoCWgPQwjMlxdgHwRfQJSGlFKUaBVN6ANoFkdAe9DIFeOXFHV9lChoBmgJaA9DCN4crtUe0VdAlIaUUpRoFU3oA2gWR0B70mcMEzO5dX2UKGgGaAloD0MIgoyACkdoOUCUhpRSlGgVS/doFkdAe+Tf3vhIfHV9lChoBmgJaA9DCC/APjp1111AlIaUUpRoFU3oA2gWR0B78W1UlzEKdX2UKGgGaAloD0MIroGtEixaVkCUhpRSlGgVTegDaBZHQHv15zgdfb91fZQoaAZoCWgPQwj0F3rE6MddQJSGlFKUaBVN6ANoFkdAe//925hBq3V9lChoBmgJaA9DCOcAwRw9vgFAlIaUUpRoFUvEaBZHQHwGDjin5zp1fZQoaAZoCWgPQwhXXByVm0gEwJSGlFKUaBVNAAFoFkdAfBUoXsPatnV9lChoBmgJaA9DCCcVjbW/WzZAlIaUUpRoFU3oA2gWR0B8HemgrYoRdX2UKGgGaAloD0MIBOYhUz64OcCUhpRSlGgVS9ZoFkdAfCt+IdlunHV9lChoBmgJaA9DCGNGeHuQoGRAlIaUUpRoFU3oA2gWR0B8LMD2alUIdX2UKGgGaAloD0MIETl9PV+aWUCUhpRSlGgVTegDaBZHQHyXSvHLidd1fZQoaAZoCWgPQwhB8Pj2rmESQJSGlFKUaBVLz2gWR0B8m44KhL5AdX2UKGgGaAloD0MIW7BUF/BzYUCUhpRSlGgVTegDaBZHQHymGqcVgx91fZQoaAZoCWgPQwgIW+z2WZE0wJSGlFKUaBVNFwFoFkdAfMmXr+o993V9lChoBmgJaA9DCMsw7gbRX11AlIaUUpRoFU3oA2gWR0B83vFId2gWdX2UKGgGaAloD0MIHXdKB+tNTcCUhpRSlGgVS8FoFkdAfOHQ8OkLyHV9lChoBmgJaA9DCH45s12hBV9AlIaUUpRoFU3oA2gWR0B85kxIre67dX2UKGgGaAloD0MIRIfAkUBSUUCUhpRSlGgVTegDaBZHQHz9I55qubJ1fZQoaAZoCWgPQwjSNv5EZQNgQJSGlFKUaBVN6ANoFkdAfQRRu0kWynV9lChoBmgJaA9DCI/FNqloXVBAlIaUUpRoFU3oA2gWR0B9CIrmQr+YdX2UKGgGaAloD0MIRrJHqBkqJ8CUhpRSlGgVS/BoFkdAfRNE+gUUPHV9lChoBmgJaA9DCFbT9UTXKFlAlIaUUpRoFU3oA2gWR0B9O5rM1TBJdX2UKGgGaAloD0MI6Qsh5/3vHECUhpRSlGgVTegDaBZHQH1PKur6tT11fZQoaAZoCWgPQwgkYd9OIvFTQJSGlFKUaBVN6ANoFkdAfV8vtMPBi3V9lChoBmgJaA9DCDp2UInrRl5AlIaUUpRoFU3oA2gWR0B9aTifg75mdX2UKGgGaAloD0MIMc7fhEKeUUCUhpRSlGgVTegDaBZHQH1vaESM98t1fZQoaAZoCWgPQwhnnIaowvhcQJSGlFKUaBVN6ANoFkdAfYZT8YQ8OnV9lChoBmgJaA9DCBXGFoIc2EzAlIaUUpRoFU3bAWgWR0B9iMT+NtIkdX2UKGgGaAloD0MIDag3o+Z/PsCUhpRSlGgVS/doFkdAfZChZQpF1HV9lChoBmgJaA9DCNBGrptSL1lAlIaUUpRoFU3oA2gWR0B9lIRmK64EdX2UKGgGaAloD0MIvXFSmPfAO0CUhpRSlGgVS/hoFkdAfbDglWwNb3V9lChoBmgJaA9DCHwrEhPUr19AlIaUUpRoFU3oA2gWR0B9sQlt0mtydX2UKGgGaAloD0MI/wdYq/ZbYUCUhpRSlGgVTegDaBZHQH4CXJtBOYZ1fZQoaAZoCWgPQwhjDoKOVnUTQJSGlFKUaBVLz2gWR0B+ChAfMfRvdX2UKGgGaAloD0MIT+YffZM2XUCUhpRSlGgVTegDaBZHQH49BBJI1+B1fZQoaAZoCWgPQwihEAGHUDZbQJSGlFKUaBVN6ANoFkdAfj+xqfvnbXV9lChoBmgJaA9DCOF5qdiYmVhAlIaUUpRoFU3oA2gWR0B+Q7cKw6hhdX2UKGgGaAloD0MIZJY9CWwDWUCUhpRSlGgVTegDaBZHQH5ZkGRmseZ1fZQoaAZoCWgPQwgf2Vw1z25UQJSGlFKUaBVN6ANoFkdAfl7Cm/FirnV9lChoBmgJaA9DCCaqtwa2D1hAlIaUUpRoFU3oA2gWR0B+azKp1ie/dX2UKGgGaAloD0MIY7SOqiYQS0CUhpRSlGgVS6NoFkdAfm67zCk43nV9lChoBmgJaA9DCKyt2F92D09AlIaUUpRoFU3oA2gWR0B+k+VpsXSCdX2UKGgGaAloD0MI3WCowwpvIUCUhpRSlGgVS+toFkdAfpeeaa1CxHV9lChoBmgJaA9DCEHxY8xdwlpAlIaUUpRoFU3oA2gWR0B+uChAWznidX2UKGgGaAloD0MIh6jCn+E6VECUhpRSlGgVTegDaBZHQH7DM2aUiY91fZQoaAZoCWgPQwh/Ep87wWpRQJSGlFKUaBVN6ANoFkdAfuX5u63AmHV9lChoBmgJaA9DCAxZ3eo5fT9AlIaUUpRoFU0XAWgWR0B+5+6xxDLKdX2UKGgGaAloD0MIZ2K6EKvNX0CUhpRSlGgVTegDaBZHQH7vJa3Zwn91fZQoaAZoCWgPQwhHxmrz/zxdQJSGlFKUaBVN6ANoFkdAfvMaV2Rq5HV9lChoBmgJaA9DCBuDTggd9DDAlIaUUpRoFUvqaBZHQH77Sih37k51fZQoaAZoCWgPQwg9RQ4RN5FYQJSGlFKUaBVN6ANoFkdAfw+GGmDUVnV9lChoBmgJaA9DCCR7hJohvldAlIaUUpRoFU3oA2gWR0B/D6jKxLTQdX2UKGgGaAloD0MIUYaqmErJXECUhpRSlGgVTegDaBZHQH8TGOMl1KZ1fZQoaAZoCWgPQwgjwOldvE8bwJSGlFKUaBVLvGgWR0B/ZOQV9F4LdX2UKGgGaAloD0MIcTs0LEZMUECUhpRSlGgVTegDaBZHQH9lm+XZ5A11fZQoaAZoCWgPQwjtnjws1CZQQJSGlFKUaBVN6ANoFkdAf5Sns9jgAXV9lChoBmgJaA9DCHlcVIuI4ERAlIaUUpRoFU3oA2gWR0B/lyg13t8edX2UKGgGaAloD0MIPBQF+kSIXECUhpRSlGgVTegDaBZHQH+155eJHiF1fZQoaAZoCWgPQwi22O2zyj1iQJSGlFKUaBVN6ANoFkdAf8MDTSb6QHV9lChoBmgJaA9DCJs90AqM6mFAlIaUUpRoFU3oA2gWR0B/xrQWvbGndX2UKGgGaAloD0MIXd4crtVGWECUhpRSlGgVTegDaBZHQH/syGJvYOF1fZQoaAZoCWgPQwh1yThGMoNjQJSGlFKUaBVN6ANoFkdAgA40rTYukHV9lChoBmgJaA9DCBqiCn+GR1dAlIaUUpRoFU3oA2gWR0CAIYKv3ai9dX2UKGgGaAloD0MInBcnvlqlYECUhpRSlGgVTegDaBZHQIAmbI5o4+91fZQoaAZoCWgPQwjHSWHe44pRQJSGlFKUaBVN6ANoFkdAgCilzEJjUnV9lChoBmgJaA9DCMvVj01yt2FAlIaUUpRoFU3oA2gWR0CALT48EFGHdX2UKGgGaAloD0MICVG+oIXaWkCUhpRSlGgVTegDaBZHQIA3vHaN+9d1fZQoaAZoCWgPQwhp/MIrSepEQJSGlFKUaBVN6ANoFkdAgDfQbEP1+XV9lChoBmgJaA9DCF+Zt+o6T1FAlIaUUpRoFU3oA2gWR0CAOZ3eN1hcdX2UKGgGaAloD0MImrZ/ZaUPXECUhpRSlGgVTegDaBZHQIA87D0lJH11fZQoaAZoCWgPQwidZoF2hy9bQJSGlFKUaBVN6ANoFkdAgD1E2pAD73VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}