Corbanp commited on
Commit
678e0ee
1 Parent(s): c2fce89

Training complete

Browse files
Files changed (1) hide show
  1. README.md +68 -0
README.md ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: bert-base-cased
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - precision
8
+ - recall
9
+ - f1
10
+ - accuracy
11
+ model-index:
12
+ - name: bert-finetuned-ner
13
+ results: []
14
+ ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # bert-finetuned-ner
20
+
21
+ This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 0.0633
24
+ - Precision: 0.9356
25
+ - Recall: 0.9512
26
+ - F1: 0.9433
27
+ - Accuracy: 0.9865
28
+
29
+ ## Model description
30
+
31
+ More information needed
32
+
33
+ ## Intended uses & limitations
34
+
35
+ More information needed
36
+
37
+ ## Training and evaluation data
38
+
39
+ More information needed
40
+
41
+ ## Training procedure
42
+
43
+ ### Training hyperparameters
44
+
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 2e-05
47
+ - train_batch_size: 8
48
+ - eval_batch_size: 8
49
+ - seed: 42
50
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
+ - lr_scheduler_type: linear
52
+ - num_epochs: 3
53
+
54
+ ### Training results
55
+
56
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
57
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
58
+ | 0.0742 | 1.0 | 1756 | 0.0678 | 0.9049 | 0.9334 | 0.9189 | 0.9817 |
59
+ | 0.0353 | 2.0 | 3512 | 0.0629 | 0.9342 | 0.9468 | 0.9405 | 0.9855 |
60
+ | 0.0213 | 3.0 | 5268 | 0.0633 | 0.9356 | 0.9512 | 0.9433 | 0.9865 |
61
+
62
+
63
+ ### Framework versions
64
+
65
+ - Transformers 4.38.1
66
+ - Pytorch 2.1.0+cu121
67
+ - Datasets 2.18.0
68
+ - Tokenizers 0.15.2