Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- zh
|
4 |
+
license: apache-2.0
|
5 |
+
tags:
|
6 |
+
- mt5-small
|
7 |
+
- text2text-generation
|
8 |
+
- dialog state tracking
|
9 |
+
- conversational system
|
10 |
+
- task-oriented dialog
|
11 |
+
datasets:
|
12 |
+
- ConvLab/crosswoz
|
13 |
+
metrics:
|
14 |
+
- Joint Goal Accuracy
|
15 |
+
- Slot F1
|
16 |
+
|
17 |
+
model-index:
|
18 |
+
- name: mt5-small-dst-crosswoz
|
19 |
+
results:
|
20 |
+
- task:
|
21 |
+
type: text2text-generation
|
22 |
+
name: dialog state tracking
|
23 |
+
dataset:
|
24 |
+
type: ConvLab/crosswoz
|
25 |
+
name: CrossWOZ
|
26 |
+
split: test
|
27 |
+
revision: 4a3e56082543ed9eecb9c76ef5eadc1aa0cc5ca0
|
28 |
+
metrics:
|
29 |
+
- type: Joint Goal Accuracy
|
30 |
+
value: 62.5
|
31 |
+
name: JGA
|
32 |
+
- type: Slot F1
|
33 |
+
value: 90.4
|
34 |
+
name: Slot F1
|
35 |
+
|
36 |
+
widget:
|
37 |
+
- text: "user: 你好,给我推荐一个评分是5分,价格在100-200元的酒店。\nsystem: 推荐您去北京布提克精品酒店。\nuser: 北京布提克精品酒店酒店是什么类型,有健身房吗?\nsystem: 北京布提克精品酒店评分是4.8分,是高档型酒店,没有健身房。\nuser: 给我推荐一个评分在4.5分以上,游玩时间在2小时 - 3小时的免费景点。"
|
38 |
+
- text: "user: 您好,请帮我推荐个4.5分以上的景点游玩呗,最好把周边有什么酒店告诉我一下。\nsystem: 那我推荐您故宫,周边的酒店有北京天伦王朝酒店, 北京首都宾馆, 北京贵都大酒店。\nuser: 那请在故宫周边的酒店里,帮我找个评分在4.5分以上的店。\nsystem: 北京贵都大酒店符合您的要求。\nuser: 请帮我呼叫一辆从故宫到酒店的出租车,告诉我车型和车牌号。"
|
39 |
+
|
40 |
+
inference:
|
41 |
+
parameters:
|
42 |
+
max_length: 100
|
43 |
+
|
44 |
+
---
|
45 |
+
|
46 |
+
# mt5-small-dst-crosswoz
|
47 |
+
|
48 |
+
This model is a fine-tuned version of [mt5-small](https://huggingface.co/mt5-small) on [CrossWOZ](https://huggingface.co/datasets/ConvLab/crosswoz).
|
49 |
+
|
50 |
+
Refer to [ConvLab-3](https://github.com/ConvLab/ConvLab-3) for model description and usage.
|
51 |
+
|
52 |
+
## Training procedure
|
53 |
+
|
54 |
+
### Training hyperparameters
|
55 |
+
|
56 |
+
The following hyperparameters were used during training:
|
57 |
+
- learning_rate: 0.001
|
58 |
+
- train_batch_size: 16
|
59 |
+
- eval_batch_size: 16
|
60 |
+
- seed: 42
|
61 |
+
- gradient_accumulation_steps: 4
|
62 |
+
- total_train_batch_size: 64
|
63 |
+
- optimizer: Adafactor
|
64 |
+
- lr_scheduler_type: linear
|
65 |
+
- num_epochs: 10.0
|
66 |
+
|
67 |
+
### Framework versions
|
68 |
+
|
69 |
+
- Transformers 4.20.1
|
70 |
+
- Pytorch 1.11.0+cu113
|
71 |
+
- Datasets 2.3.2
|
72 |
+
- Tokenizers 0.12.1
|