zhuqi commited on
Commit
c79572f
1 Parent(s): 060b41b

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +72 -0
README.md ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - zh
4
+ license: apache-2.0
5
+ tags:
6
+ - mt5-small
7
+ - text2text-generation
8
+ - dialog state tracking
9
+ - conversational system
10
+ - task-oriented dialog
11
+ datasets:
12
+ - ConvLab/crosswoz
13
+ metrics:
14
+ - Joint Goal Accuracy
15
+ - Slot F1
16
+
17
+ model-index:
18
+ - name: mt5-small-dst-crosswoz
19
+ results:
20
+ - task:
21
+ type: text2text-generation
22
+ name: dialog state tracking
23
+ dataset:
24
+ type: ConvLab/crosswoz
25
+ name: CrossWOZ
26
+ split: test
27
+ revision: 4a3e56082543ed9eecb9c76ef5eadc1aa0cc5ca0
28
+ metrics:
29
+ - type: Joint Goal Accuracy
30
+ value: 62.5
31
+ name: JGA
32
+ - type: Slot F1
33
+ value: 90.4
34
+ name: Slot F1
35
+
36
+ widget:
37
+ - text: "user: 你好,给我推荐一个评分是5分,价格在100-200元的酒店。\nsystem: 推荐您去北京布提克精品酒店。\nuser: 北京布提克精品酒店酒店是什么类型,有健身房吗?\nsystem: 北京布提克精品酒店评分是4.8分,是高档型酒店,没有健身房。\nuser: 给我推荐一个评分在4.5分以上,游玩时间在2小时 - 3小时的免费景点。"
38
+ - text: "user: 您好,请帮我推荐个4.5分以上的景点游玩呗,最好把周边有什么酒店告诉我一下。\nsystem: 那我推荐您故宫,周边的酒店有北京天伦王朝酒店, 北京首都宾馆, 北京贵都大酒店。\nuser: 那请在故宫周边的酒店里,帮我找个评分在4.5分以上的店。\nsystem: 北京贵都大酒店符合您的要求。\nuser: 请帮我呼叫一辆从故宫到酒店的出租车,告诉我车型和车牌号。"
39
+
40
+ inference:
41
+ parameters:
42
+ max_length: 100
43
+
44
+ ---
45
+
46
+ # mt5-small-dst-crosswoz
47
+
48
+ This model is a fine-tuned version of [mt5-small](https://huggingface.co/mt5-small) on [CrossWOZ](https://huggingface.co/datasets/ConvLab/crosswoz).
49
+
50
+ Refer to [ConvLab-3](https://github.com/ConvLab/ConvLab-3) for model description and usage.
51
+
52
+ ## Training procedure
53
+
54
+ ### Training hyperparameters
55
+
56
+ The following hyperparameters were used during training:
57
+ - learning_rate: 0.001
58
+ - train_batch_size: 16
59
+ - eval_batch_size: 16
60
+ - seed: 42
61
+ - gradient_accumulation_steps: 4
62
+ - total_train_batch_size: 64
63
+ - optimizer: Adafactor
64
+ - lr_scheduler_type: linear
65
+ - num_epochs: 10.0
66
+
67
+ ### Framework versions
68
+
69
+ - Transformers 4.20.1
70
+ - Pytorch 1.11.0+cu113
71
+ - Datasets 2.3.2
72
+ - Tokenizers 0.12.1