patrickvonplaten
commited on
Commit
•
86a12be
1
Parent(s):
673a573
up
Browse files
README.md
CHANGED
@@ -7,12 +7,12 @@ tags:
|
|
7 |
- stable-diffusion
|
8 |
---
|
9 |
|
10 |
-
# Controlnet - v1.1 - *
|
11 |
|
12 |
-
**Controlnet v1.1** is the successor model of [Controlnet v1.0](https://huggingface.co/lllyasviel/
|
13 |
and was released in [lllyasviel/ControlNet-v1-1](https://huggingface.co/lllyasviel/ControlNet-v1-1) by [Lvmin Zhang](https://huggingface.co/lllyasviel).
|
14 |
|
15 |
-
This checkpoint is a conversion of [the original checkpoint](https://huggingface.co/lllyasviel/ControlNet-v1-1/blob/main/
|
16 |
It can be used in combination with **Stable Diffusion**, such as [runwayml/stable-diffusion-v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5).
|
17 |
|
18 |
|
@@ -23,7 +23,7 @@ ControlNet is a neural network structure to control diffusion models by adding e
|
|
23 |
|
24 |
![img](./sd.png)
|
25 |
|
26 |
-
This checkpoint corresponds to the ControlNet conditioned on **
|
27 |
|
28 |
## Model Details
|
29 |
- **Developed by:** Lvmin Zhang, Maneesh Agrawala
|
@@ -64,10 +64,10 @@ Experimentally, the checkpoint can be used with other diffusion models such as d
|
|
64 |
|
65 |
**Note**: If you want to process an image to create the auxiliary conditioning, external dependencies are required as shown below:
|
66 |
|
67 |
-
1. Install
|
68 |
|
69 |
```sh
|
70 |
-
$ pip install
|
71 |
```
|
72 |
|
73 |
2. Let's install `diffusers` and related packages:
|
@@ -84,9 +84,9 @@ import os
|
|
84 |
from huggingface_hub import HfApi
|
85 |
from pathlib import Path
|
86 |
from diffusers.utils import load_image
|
87 |
-
import numpy as np
|
88 |
-
import cv2
|
89 |
from PIL import Image
|
|
|
|
|
90 |
|
91 |
from diffusers import (
|
92 |
ControlNetModel,
|
@@ -94,22 +94,16 @@ from diffusers import (
|
|
94 |
UniPCMultistepScheduler,
|
95 |
)
|
96 |
|
97 |
-
checkpoint = "ControlNet-1-1-preview/
|
98 |
|
99 |
image = load_image(
|
100 |
-
"https://huggingface.co/ControlNet-1-1-preview/
|
101 |
)
|
102 |
|
103 |
-
|
104 |
-
|
105 |
-
low_threshold = 100
|
106 |
-
high_threshold = 200
|
107 |
-
|
108 |
-
image = cv2.Canny(image, low_threshold, high_threshold)
|
109 |
-
image = image[:, :, None]
|
110 |
-
image = np.concatenate([image, image, image], axis=2)
|
111 |
-
control_image = Image.fromarray(image)
|
112 |
|
|
|
113 |
control_image.save("./images/control.png")
|
114 |
|
115 |
controlnet = ControlNetModel.from_pretrained(checkpoint, torch_dtype=torch.float16)
|
@@ -120,10 +114,11 @@ pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
|
120 |
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
121 |
pipe.enable_model_cpu_offload()
|
122 |
|
123 |
-
generator = torch.manual_seed(
|
124 |
-
image = pipe(
|
125 |
|
126 |
image.save('images/image_out.png')
|
|
|
127 |
```
|
128 |
|
129 |
![bird](./images/input.png)
|
@@ -139,25 +134,12 @@ on a different type of conditioning:
|
|
139 |
|
140 |
| Model Name | Control Image Overview| Control Image Example | Generated Image Example |
|
141 |
|---|---|---|---|
|
142 |
-
|
143 |
-
|[lllyasviel/control_v11p_sd15_mlsd](https://huggingface.co/lllyasviel/control_v11p_sd15_mlsd)<br/> *Trained with Midas depth estimation* |A grayscale image with black representing deep areas and white representing shallow areas.|<a href="https://huggingface.co/takuma104/controlnet_dev/blob/main/gen_compare/control_images/converted/control_vermeer_depth.png"><img width="64" src="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/control_images/converted/control_vermeer_depth.png"/></a>|<a href="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/output_images/diffusers/output_vermeer_depth_2.png"><img width="64" src="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/output_images/diffusers/output_vermeer_depth_2.png"/></a>|
|
144 |
-
|[lllyasviel/control_v11p_sd15_depth](https://huggingface.co/lllyasviel/control_v11p_sd15_depth)<br/> *Trained with HED edge detection (soft edge)* |A monochrome image with white soft edges on a black background.|<a href="https://huggingface.co/takuma104/controlnet_dev/blob/main/gen_compare/control_images/converted/control_bird_hed.png"><img width="64" src="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/control_images/converted/control_bird_hed.png"/></a>|<a href="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/output_images/diffusers/output_bird_hed_1.png"><img width="64" src="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/output_images/diffusers/output_bird_hed_1.png"/></a> |
|
145 |
-
|[lllyasviel/control_v11p_sd15_normalbae](https://huggingface.co/lllyasviel/control_v11p_sd15_normalbae)<br/> *Trained with M-LSD line detection* |A monochrome image composed only of white straight lines on a black background.|<a href="https://huggingface.co/takuma104/controlnet_dev/blob/main/gen_compare/control_images/converted/control_room_mlsd.png"><img width="64" src="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/control_images/converted/control_room_mlsd.png"/></a>|<a href="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/output_images/diffusers/output_room_mlsd_0.png"><img width="64" src="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/output_images/diffusers/output_room_mlsd_0.png"/></a>|
|
146 |
-
|[lllyasviel/control_v11p_sd15_inpaint](https://huggingface.co/lllyasviel/control_v11p_sd15_inpaint)<br/> *Trained with normal map* |A [normal mapped](https://en.wikipedia.org/wiki/Normal_mapping) image.|<a href="https://huggingface.co/takuma104/controlnet_dev/blob/main/gen_compare/control_images/converted/control_human_normal.png"><img width="64" src="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/control_images/converted/control_human_normal.png"/></a>|<a href="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/output_images/diffusers/output_human_normal_1.png"><img width="64" src="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/output_images/diffusers/output_human_normal_1.png"/></a>|
|
147 |
-
|[lllyasviel/control_v11p_sd15_lineart](https://huggingface.co/lllyasviel/control_v11p_sd15_lineart)<br/> *Trained with OpenPose bone image* |A [OpenPose bone](https://github.com/CMU-Perceptual-Computing-Lab/openpose) image.|<a href="https://huggingface.co/takuma104/controlnet_dev/blob/main/gen_compare/control_images/converted/control_human_openpose.png"><img width="64" src="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/control_images/converted/control_human_openpose.png"/></a>|<a href="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/output_images/diffusers/output_human_openpose_0.png"><img width="64" src="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/output_images/diffusers/output_human_openpose_0.png"/></a>|
|
148 |
-
|[lllyasviel/control_v11p_sd15s2_lineart_anime](https://huggingface.co/lllyasviel/control_v11p_sd15s2_lineart_anime)<br/> *Trained with human scribbles* |A hand-drawn monochrome image with white outlines on a black background.|<a href="https://huggingface.co/takuma104/controlnet_dev/blob/main/gen_compare/control_images/converted/control_vermeer_scribble.png"><img width="64" src="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/control_images/converted/control_vermeer_scribble.png"/></a>|<a href="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/output_images/diffusers/output_vermeer_scribble_0.png"><img width="64" src="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/output_images/diffusers/output_vermeer_scribble_0.png"/></a> |
|
149 |
-
|[lllyasviel/control_v11p_sd15_openpose](https://huggingface.co/lllyasviel/control_v11p_sd15_openpose)<br/>*Trained with semantic segmentation* |An [ADE20K](https://groups.csail.mit.edu/vision/datasets/ADE20K/)'s segmentation protocol image.|<a href="https://huggingface.co/takuma104/controlnet_dev/blob/main/gen_compare/control_images/converted/control_room_seg.png"><img width="64" src="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/control_images/converted/control_room_seg.png"/></a>|<a href="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/output_images/diffusers/output_room_seg_1.png"><img width="64" src="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/output_images/diffusers/output_room_seg_1.png"/></a> |
|
150 |
-
|[lllyasviel/control_v11p_sd15_scribble](https://huggingface.co/lllyasviel/control_v11p_sd15_scribble)<br/>*Trained with semantic segmentation* |An [ADE20K](https://groups.csail.mit.edu/vision/datasets/ADE20K/)'s segmentation protocol image.|<a href="https://huggingface.co/takuma104/controlnet_dev/blob/main/gen_compare/control_images/converted/control_room_seg.png"><img width="64" src="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/control_images/converted/control_room_seg.png"/></a>|<a href="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/output_images/diffusers/output_room_seg_1.png"><img width="64" src="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/output_images/diffusers/output_room_seg_1.png"/></a> |
|
151 |
-
|[lllyasviel/control_v11p_sd15_softedge](https://huggingface.co/lllyasviel/control_v11p_sd15_softedge)<br/>*Trained with semantic segmentation* |An [ADE20K](https://groups.csail.mit.edu/vision/datasets/ADE20K/)'s segmentation protocol image.|<a href="https://huggingface.co/takuma104/controlnet_dev/blob/main/gen_compare/control_images/converted/control_room_seg.png"><img width="64" src="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/control_images/converted/control_room_seg.png"/></a>|<a href="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/output_images/diffusers/output_room_seg_1.png"><img width="64" src="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/output_images/diffusers/output_room_seg_1.png"/></a> |
|
152 |
-
|[lllyasviel/control_v11e_sd15_shuffle](https://huggingface.co/lllyasviel/control_v11e_sd15_shuffle)<br/>*Trained with semantic segmentation* |An [ADE20K](https://groups.csail.mit.edu/vision/datasets/ADE20K/)'s segmentation protocol image.|<a href="https://huggingface.co/takuma104/controlnet_dev/blob/main/gen_compare/control_images/converted/control_room_seg.png"><img width="64" src="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/control_images/converted/control_room_seg.png"/></a>|<a href="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/output_images/diffusers/output_room_seg_1.png"><img width="64" src="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/output_images/diffusers/output_room_seg_1.png"/></a> |
|
153 |
-
|[lllyasviel/control_v11e_sd15_ip2p](https://huggingface.co/lllyasviel/control_v11e_sd15_ip2p)<br/>*Trained with semantic segmentation* |An [ADE20K](https://groups.csail.mit.edu/vision/datasets/ADE20K/)'s segmentation protocol image.|<a href="https://huggingface.co/takuma104/controlnet_dev/blob/main/gen_compare/control_images/converted/control_room_seg.png"><img width="64" src="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/control_images/converted/control_room_seg.png"/></a>|<a href="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/output_images/diffusers/output_room_seg_1.png"><img width="64" src="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/output_images/diffusers/output_room_seg_1.png"/></a> |
|
154 |
-
|[lllyasviel/control_v11u_sd15_tile](https://huggingface.co/lllyasviel/control_v11u_sd15_tile)<br/>*Trained with semantic segmentation* |An [ADE20K](https://groups.csail.mit.edu/vision/datasets/ADE20K/)'s segmentation protocol image.|<a href="https://huggingface.co/takuma104/controlnet_dev/blob/main/gen_compare/control_images/converted/control_room_seg.png"><img width="64" src="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/control_images/converted/control_room_seg.png"/></a>|<a href="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/output_images/diffusers/output_room_seg_1.png"><img width="64" src="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/output_images/diffusers/output_room_seg_1.png"/></a> |
|
155 |
|
156 |
### Training
|
157 |
|
158 |
-
|
159 |
-
caption pairs using Stable Diffusion 1.5 as a base model.
|
160 |
|
161 |
### Blog post
|
162 |
|
163 |
-
For more information, please also have a look at the [Diffusers ControlNet Blog Post](https://huggingface.co/blog/controlnet).
|
|
|
7 |
- stable-diffusion
|
8 |
---
|
9 |
|
10 |
+
# Controlnet - v1.1 - *normalbae Version*
|
11 |
|
12 |
+
**Controlnet v1.1** is the successor model of [Controlnet v1.0](https://huggingface.co/lllyasviel/ControlNet)
|
13 |
and was released in [lllyasviel/ControlNet-v1-1](https://huggingface.co/lllyasviel/ControlNet-v1-1) by [Lvmin Zhang](https://huggingface.co/lllyasviel).
|
14 |
|
15 |
+
This checkpoint is a conversion of [the original checkpoint](https://huggingface.co/lllyasviel/ControlNet-v1-1/blob/main/control_v11p_sd15_normalbae.pth) into `diffusers` format.
|
16 |
It can be used in combination with **Stable Diffusion**, such as [runwayml/stable-diffusion-v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5).
|
17 |
|
18 |
|
|
|
23 |
|
24 |
![img](./sd.png)
|
25 |
|
26 |
+
This checkpoint corresponds to the ControlNet conditioned on **normalbae images**.
|
27 |
|
28 |
## Model Details
|
29 |
- **Developed by:** Lvmin Zhang, Maneesh Agrawala
|
|
|
64 |
|
65 |
**Note**: If you want to process an image to create the auxiliary conditioning, external dependencies are required as shown below:
|
66 |
|
67 |
+
1. Install https://github.com/patrickvonplaten/controlnet_aux
|
68 |
|
69 |
```sh
|
70 |
+
$ pip install controlnet_aux==0.3.0
|
71 |
```
|
72 |
|
73 |
2. Let's install `diffusers` and related packages:
|
|
|
84 |
from huggingface_hub import HfApi
|
85 |
from pathlib import Path
|
86 |
from diffusers.utils import load_image
|
|
|
|
|
87 |
from PIL import Image
|
88 |
+
import numpy as np
|
89 |
+
from controlnet_aux import NormalBaeDetector
|
90 |
|
91 |
from diffusers import (
|
92 |
ControlNetModel,
|
|
|
94 |
UniPCMultistepScheduler,
|
95 |
)
|
96 |
|
97 |
+
checkpoint = "ControlNet-1-1-preview/control_v11p_sd15_normalbae"
|
98 |
|
99 |
image = load_image(
|
100 |
+
"https://huggingface.co/ControlNet-1-1-preview/control_v11p_sd15_normalbae/resolve/main/images/input.png"
|
101 |
)
|
102 |
|
103 |
+
prompt = "A head full of roses"
|
104 |
+
processor = NormalBaeDetector.from_pretrained("lllyasviel/Annotators")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
|
106 |
+
control_image = processor(image)
|
107 |
control_image.save("./images/control.png")
|
108 |
|
109 |
controlnet = ControlNetModel.from_pretrained(checkpoint, torch_dtype=torch.float16)
|
|
|
114 |
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
115 |
pipe.enable_model_cpu_offload()
|
116 |
|
117 |
+
generator = torch.manual_seed(0)
|
118 |
+
image = pipe(prompt, num_inference_steps=30, generator=generator, image=image).images[0]
|
119 |
|
120 |
image.save('images/image_out.png')
|
121 |
+
|
122 |
```
|
123 |
|
124 |
![bird](./images/input.png)
|
|
|
134 |
|
135 |
| Model Name | Control Image Overview| Control Image Example | Generated Image Example |
|
136 |
|---|---|---|---|
|
137 |
+
TODO
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
|
139 |
### Training
|
140 |
|
141 |
+
TODO
|
|
|
142 |
|
143 |
### Blog post
|
144 |
|
145 |
+
For more information, please also have a look at the [Diffusers ControlNet Blog Post](https://huggingface.co/blog/controlnet).
|