update model card README.md
Browse files
README.md
CHANGED
@@ -24,16 +24,16 @@ model-index:
|
|
24 |
metrics:
|
25 |
- name: Precision
|
26 |
type: precision
|
27 |
-
value: 0.
|
28 |
- name: Recall
|
29 |
type: recall
|
30 |
-
value: 0.
|
31 |
- name: F1
|
32 |
type: f1
|
33 |
-
value: 0.
|
34 |
- name: Accuracy
|
35 |
type: accuracy
|
36 |
-
value: 0.
|
37 |
---
|
38 |
|
39 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -43,11 +43,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
43 |
|
44 |
This model is a fine-tuned version of [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) on the lg-ner dataset.
|
45 |
It achieves the following results on the evaluation set:
|
46 |
-
- Loss: 0.
|
47 |
-
- Precision: 0.
|
48 |
-
- Recall: 0.
|
49 |
-
- F1: 0.
|
50 |
-
- Accuracy: 0.
|
51 |
|
52 |
## Model description
|
53 |
|
@@ -78,17 +78,17 @@ The following hyperparameters were used during training:
|
|
78 |
|
79 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
80 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
81 |
-
| No log | 1.0 | 261 | 0.
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
-
| 0.
|
86 |
-
| 0.
|
87 |
|
88 |
|
89 |
### Framework versions
|
90 |
|
91 |
-
- Transformers 4.
|
92 |
- Pytorch 1.13.1+cu116
|
93 |
-
- Datasets 2.
|
94 |
- Tokenizers 0.13.2
|
|
|
24 |
metrics:
|
25 |
- name: Precision
|
26 |
type: precision
|
27 |
+
value: 0.8141289437585734
|
28 |
- name: Recall
|
29 |
type: recall
|
30 |
+
value: 0.7971793149764943
|
31 |
- name: F1
|
32 |
type: f1
|
33 |
+
value: 0.8055649813369528
|
34 |
- name: Accuracy
|
35 |
type: accuracy
|
36 |
+
value: 0.952700740525628
|
37 |
---
|
38 |
|
39 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
43 |
|
44 |
This model is a fine-tuned version of [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) on the lg-ner dataset.
|
45 |
It achieves the following results on the evaluation set:
|
46 |
+
- Loss: 0.2295
|
47 |
+
- Precision: 0.8141
|
48 |
+
- Recall: 0.7972
|
49 |
+
- F1: 0.8056
|
50 |
+
- Accuracy: 0.9527
|
51 |
|
52 |
## Model description
|
53 |
|
|
|
78 |
|
79 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
80 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
81 |
+
| No log | 1.0 | 261 | 0.4226 | 0.6273 | 0.3606 | 0.4580 | 0.8928 |
|
82 |
+
| 0.5572 | 2.0 | 522 | 0.2835 | 0.7720 | 0.6185 | 0.6868 | 0.9219 |
|
83 |
+
| 0.5572 | 3.0 | 783 | 0.2740 | 0.7579 | 0.7401 | 0.7489 | 0.9311 |
|
84 |
+
| 0.1745 | 4.0 | 1044 | 0.2423 | 0.7895 | 0.7683 | 0.7788 | 0.9399 |
|
85 |
+
| 0.1745 | 5.0 | 1305 | 0.2273 | 0.8048 | 0.7945 | 0.7996 | 0.9498 |
|
86 |
+
| 0.086 | 6.0 | 1566 | 0.2295 | 0.8141 | 0.7972 | 0.8056 | 0.9527 |
|
87 |
|
88 |
|
89 |
### Framework versions
|
90 |
|
91 |
+
- Transformers 4.27.4
|
92 |
- Pytorch 1.13.1+cu116
|
93 |
+
- Datasets 2.11.0
|
94 |
- Tokenizers 0.13.2
|