update model card README.md
Browse files
README.md
CHANGED
@@ -24,16 +24,16 @@ model-index:
|
|
24 |
metrics:
|
25 |
- name: Precision
|
26 |
type: precision
|
27 |
-
value: 0.
|
28 |
- name: Recall
|
29 |
type: recall
|
30 |
-
value: 0.
|
31 |
- name: F1
|
32 |
type: f1
|
33 |
-
value: 0.
|
34 |
- name: Accuracy
|
35 |
type: accuracy
|
36 |
-
value: 0.
|
37 |
---
|
38 |
|
39 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -43,11 +43,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
43 |
|
44 |
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the lg-ner dataset.
|
45 |
It achieves the following results on the evaluation set:
|
46 |
-
- Loss: 0.
|
47 |
-
- Precision: 0.
|
48 |
-
- Recall: 0.
|
49 |
-
- F1: 0.
|
50 |
-
- Accuracy: 0.
|
51 |
|
52 |
## Model description
|
53 |
|
@@ -78,16 +78,16 @@ The following hyperparameters were used during training:
|
|
78 |
|
79 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
80 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
81 |
-
|
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
-
| 0.
|
86 |
-
| 0.
|
87 |
-
| 0.
|
88 |
-
| 0.
|
89 |
-
| 0.
|
90 |
-
| 0.
|
91 |
|
92 |
|
93 |
### Framework versions
|
|
|
24 |
metrics:
|
25 |
- name: Precision
|
26 |
type: precision
|
27 |
+
value: 0.7532580364900087
|
28 |
- name: Recall
|
29 |
type: recall
|
30 |
+
value: 0.7416595380667237
|
31 |
- name: F1
|
32 |
type: f1
|
33 |
+
value: 0.7474137931034481
|
34 |
- name: Accuracy
|
35 |
type: accuracy
|
36 |
+
value: 0.9492845117845118
|
37 |
---
|
38 |
|
39 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
43 |
|
44 |
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the lg-ner dataset.
|
45 |
It achieves the following results on the evaluation set:
|
46 |
+
- Loss: 0.2432
|
47 |
+
- Precision: 0.7533
|
48 |
+
- Recall: 0.7417
|
49 |
+
- F1: 0.7474
|
50 |
+
- Accuracy: 0.9493
|
51 |
|
52 |
## Model description
|
53 |
|
|
|
78 |
|
79 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
80 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
81 |
+
| No log | 1.0 | 261 | 0.3950 | 0.5892 | 0.4380 | 0.5025 | 0.9104 |
|
82 |
+
| 0.5722 | 2.0 | 522 | 0.2869 | 0.6306 | 0.6484 | 0.6394 | 0.9311 |
|
83 |
+
| 0.5722 | 3.0 | 783 | 0.2300 | 0.7047 | 0.6758 | 0.6900 | 0.9452 |
|
84 |
+
| 0.2424 | 4.0 | 1044 | 0.2293 | 0.6793 | 0.7340 | 0.7056 | 0.9426 |
|
85 |
+
| 0.2424 | 5.0 | 1305 | 0.2208 | 0.7952 | 0.7074 | 0.7488 | 0.9497 |
|
86 |
+
| 0.1564 | 6.0 | 1566 | 0.2345 | 0.7104 | 0.7408 | 0.7253 | 0.9447 |
|
87 |
+
| 0.1564 | 7.0 | 1827 | 0.2312 | 0.6956 | 0.7605 | 0.7266 | 0.9456 |
|
88 |
+
| 0.112 | 8.0 | 2088 | 0.2404 | 0.7673 | 0.7417 | 0.7542 | 0.9500 |
|
89 |
+
| 0.112 | 9.0 | 2349 | 0.2303 | 0.7698 | 0.7553 | 0.7625 | 0.9531 |
|
90 |
+
| 0.0879 | 10.0 | 2610 | 0.2432 | 0.7533 | 0.7417 | 0.7474 | 0.9493 |
|
91 |
|
92 |
|
93 |
### Framework versions
|