Conrad747 commited on
Commit
ad1f6a8
1 Parent(s): 0750448

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +19 -19
README.md CHANGED
@@ -24,16 +24,16 @@ model-index:
24
  metrics:
25
  - name: Precision
26
  type: precision
27
- value: 0.9370212765957446
28
  - name: Recall
29
  type: recall
30
- value: 0.9359591952394446
31
  - name: F1
32
  type: f1
33
- value: 0.9364899347887723
34
  - name: Accuracy
35
  type: accuracy
36
- value: 0.9824210946863764
37
  ---
38
 
39
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -43,11 +43,11 @@ should probably proofread and complete it, then remove this comment. -->
43
 
44
  This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the lg-ner dataset.
45
  It achieves the following results on the evaluation set:
46
- - Loss: 0.0908
47
- - Precision: 0.9370
48
- - Recall: 0.9360
49
- - F1: 0.9365
50
- - Accuracy: 0.9824
51
 
52
  ## Model description
53
 
@@ -78,16 +78,16 @@ The following hyperparameters were used during training:
78
 
79
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
80
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
81
- | 0.5792 | 1.0 | 609 | 0.2463 | 0.7259 | 0.7662 | 0.7455 | 0.9406 |
82
- | 0.2271 | 2.0 | 1218 | 0.1587 | 0.8198 | 0.8782 | 0.8480 | 0.9607 |
83
- | 0.1652 | 3.0 | 1827 | 0.1289 | 0.8612 | 0.8918 | 0.8762 | 0.9677 |
84
- | 0.1266 | 4.0 | 2436 | 0.1083 | 0.8990 | 0.9059 | 0.9025 | 0.9744 |
85
- | 0.081 | 5.0 | 3045 | 0.1043 | 0.9183 | 0.9147 | 0.9165 | 0.9767 |
86
- | 0.0676 | 6.0 | 3654 | 0.0893 | 0.9261 | 0.9334 | 0.9297 | 0.9811 |
87
- | 0.0565 | 7.0 | 4263 | 0.0877 | 0.9389 | 0.9368 | 0.9379 | 0.9813 |
88
- | 0.0519 | 8.0 | 4872 | 0.0919 | 0.9404 | 0.9340 | 0.9372 | 0.9819 |
89
- | 0.047 | 9.0 | 5481 | 0.0896 | 0.9376 | 0.9360 | 0.9368 | 0.9825 |
90
- | 0.0379 | 10.0 | 6090 | 0.0908 | 0.9370 | 0.9360 | 0.9365 | 0.9824 |
91
 
92
 
93
  ### Framework versions
 
24
  metrics:
25
  - name: Precision
26
  type: precision
27
+ value: 0.7532580364900087
28
  - name: Recall
29
  type: recall
30
+ value: 0.7416595380667237
31
  - name: F1
32
  type: f1
33
+ value: 0.7474137931034481
34
  - name: Accuracy
35
  type: accuracy
36
+ value: 0.9492845117845118
37
  ---
38
 
39
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
43
 
44
  This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the lg-ner dataset.
45
  It achieves the following results on the evaluation set:
46
+ - Loss: 0.2432
47
+ - Precision: 0.7533
48
+ - Recall: 0.7417
49
+ - F1: 0.7474
50
+ - Accuracy: 0.9493
51
 
52
  ## Model description
53
 
 
78
 
79
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
80
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
81
+ | No log | 1.0 | 261 | 0.3950 | 0.5892 | 0.4380 | 0.5025 | 0.9104 |
82
+ | 0.5722 | 2.0 | 522 | 0.2869 | 0.6306 | 0.6484 | 0.6394 | 0.9311 |
83
+ | 0.5722 | 3.0 | 783 | 0.2300 | 0.7047 | 0.6758 | 0.6900 | 0.9452 |
84
+ | 0.2424 | 4.0 | 1044 | 0.2293 | 0.6793 | 0.7340 | 0.7056 | 0.9426 |
85
+ | 0.2424 | 5.0 | 1305 | 0.2208 | 0.7952 | 0.7074 | 0.7488 | 0.9497 |
86
+ | 0.1564 | 6.0 | 1566 | 0.2345 | 0.7104 | 0.7408 | 0.7253 | 0.9447 |
87
+ | 0.1564 | 7.0 | 1827 | 0.2312 | 0.6956 | 0.7605 | 0.7266 | 0.9456 |
88
+ | 0.112 | 8.0 | 2088 | 0.2404 | 0.7673 | 0.7417 | 0.7542 | 0.9500 |
89
+ | 0.112 | 9.0 | 2349 | 0.2303 | 0.7698 | 0.7553 | 0.7625 | 0.9531 |
90
+ | 0.0879 | 10.0 | 2610 | 0.2432 | 0.7533 | 0.7417 | 0.7474 | 0.9493 |
91
 
92
 
93
  ### Framework versions