Conrad747 commited on
Commit
08700ab
·
1 Parent(s): 4c347a8

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +98 -0
README.md ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - lg-ner
7
+ metrics:
8
+ - precision
9
+ - recall
10
+ - f1
11
+ - accuracy
12
+ model-index:
13
+ - name: luganda-ner-v1
14
+ results:
15
+ - task:
16
+ name: Token Classification
17
+ type: token-classification
18
+ dataset:
19
+ name: lg-ner
20
+ type: lg-ner
21
+ config: lug
22
+ split: train
23
+ args: lug
24
+ metrics:
25
+ - name: Precision
26
+ type: precision
27
+ value: 0.4158878504672897
28
+ - name: Recall
29
+ type: recall
30
+ value: 0.5028248587570622
31
+ - name: F1
32
+ type: f1
33
+ value: 0.45524296675191817
34
+ - name: Accuracy
35
+ type: accuracy
36
+ value: 0.8060836501901141
37
+ ---
38
+
39
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
40
+ should probably proofread and complete it, then remove this comment. -->
41
+
42
+ # luganda-ner-v1
43
+
44
+ This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the lg-ner dataset.
45
+ It achieves the following results on the evaluation set:
46
+ - Loss: 0.7681
47
+ - Precision: 0.4159
48
+ - Recall: 0.5028
49
+ - F1: 0.4552
50
+ - Accuracy: 0.8061
51
+
52
+ ## Model description
53
+
54
+ More information needed
55
+
56
+ ## Intended uses & limitations
57
+
58
+ More information needed
59
+
60
+ ## Training and evaluation data
61
+
62
+ More information needed
63
+
64
+ ## Training procedure
65
+
66
+ ### Training hyperparameters
67
+
68
+ The following hyperparameters were used during training:
69
+ - learning_rate: 2e-05
70
+ - train_batch_size: 8
71
+ - eval_batch_size: 8
72
+ - seed: 42
73
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
74
+ - lr_scheduler_type: linear
75
+ - num_epochs: 10
76
+
77
+ ### Training results
78
+
79
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
80
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
81
+ | No log | 1.0 | 25 | 0.9702 | 0.2686 | 0.3672 | 0.3103 | 0.7240 |
82
+ | No log | 2.0 | 50 | 0.8977 | 0.2702 | 0.3785 | 0.3153 | 0.7468 |
83
+ | No log | 3.0 | 75 | 0.8785 | 0.2517 | 0.4124 | 0.3126 | 0.7551 |
84
+ | No log | 4.0 | 100 | 0.8608 | 0.2927 | 0.4746 | 0.3621 | 0.7567 |
85
+ | No log | 5.0 | 125 | 0.7859 | 0.4053 | 0.4350 | 0.4196 | 0.7909 |
86
+ | No log | 6.0 | 150 | 0.7728 | 0.4010 | 0.4350 | 0.4173 | 0.7901 |
87
+ | No log | 7.0 | 175 | 0.7647 | 0.4118 | 0.4746 | 0.4409 | 0.7932 |
88
+ | No log | 8.0 | 200 | 0.7800 | 0.3929 | 0.4972 | 0.4389 | 0.7985 |
89
+ | No log | 9.0 | 225 | 0.7706 | 0.4211 | 0.4972 | 0.4560 | 0.8053 |
90
+ | No log | 10.0 | 250 | 0.7681 | 0.4159 | 0.5028 | 0.4552 | 0.8061 |
91
+
92
+
93
+ ### Framework versions
94
+
95
+ - Transformers 4.24.0
96
+ - Pytorch 1.12.1+cu113
97
+ - Datasets 2.7.1
98
+ - Tokenizers 0.13.2