Upload PPO LunarLander-v2 trained agent
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 151.84 +/- 64.37
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd88fe3af80>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd88fe42050>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd88fe420e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd88fe42170>", "_build": "<function ActorCriticPolicy._build at 0x7fd88fe42200>", "forward": "<function ActorCriticPolicy.forward at 0x7fd88fe42290>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd88fe42320>", "_predict": "<function ActorCriticPolicy._predict at 0x7fd88fe423b0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd88fe42440>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd88fe424d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd88fe42560>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fd88fe1b090>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652741395.3765626, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAObRQj3hLpK6VUxTNlP3ajEHIwI7wLuAtQAAgD8AAIA/zQiEO08FKrxYMqQ9//PevZAsgb0eUS+/AACAPwAAgD9Nm9q99nBKunHJmTua2aE091gtu7bpsroAAIA/AAAAADNo4b2F68i504CQO0OPLboVCqA7K/vlOgAAgD8AAIA/Ggw+PXtSq7r8JT86UypAttkBWTnru1q5AACAPwAAgD+zjLo9EJU6P5UDGj0HSxa+MEyoOcI9TT0AAAAAAAAAAM3bRr2OIKc/uUqIvcRhX75/1NW8rGGFPQAAAAAAAAAAM4TmPMOJFbqpqYg7lU6GOK78Q7vW8I+5AACAPwAAgD+abAe+8uGePwB3kb1c01e+o37IvV1TuL0AAAAAAAAAAADoEbspRCS6BUPhOvrkzzWMyHs7R0sFugAAgD8AAIA/ZrfuPVKwsbvKzHy8f4fsPHJJ5Tydw8O9AACAPwAAgD9zu8q94wGOP2XBUr50V6e+Rk2luWpMo7wAAAAAAAAAAM0qQLwWF7s+3iexvb8+X74ALja9CA9TvQAAAAAAAAAAAPjmuw9Bej5z1PK88OmOvQGB47zscqm9AAAAAAAAAACmsqu9j9Ynulh0qDrMaRi2nFCSOhL8BLUAAIA/AACAP20MID7PXR68EW4SO6aS+rhW/Yy9UeU2ugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIM1Naf0vhVkCUhpRSlIwBbJRN6AOMAXSUR0B8UmwQlKK6dX2UKGgGaAloD0MIr+yCwTWIZUCUhpRSlGgVTegDaBZHQHybw9FF2FF1fZQoaAZoCWgPQwie6/twkKFdQJSGlFKUaBVN6ANoFkdAfLdWRA8jiXV9lChoBmgJaA9DCPUUOUTcPFtAlIaUUpRoFU3oA2gWR0B8u6RlpXZHdX2UKGgGaAloD0MIKhkAqrgTX0CUhpRSlGgVTegDaBZHQHy9q5PM0P91fZQoaAZoCWgPQwg7HF2lu/FdQJSGlFKUaBVN6ANoFkdAfMx8G9pRGnV9lChoBmgJaA9DCD6WPnRBmVlAlIaUUpRoFU3oA2gWR0B819NqQA+7dX2UKGgGaAloD0MI1XWopiSOZkCUhpRSlGgVTegDaBZHQHze76YVqN91fZQoaAZoCWgPQwiOIQA49kFeQJSGlFKUaBVN6ANoFkdAfPg9q1w5vXV9lChoBmgJaA9DCCf1ZWknUmNAlIaUUpRoFU3oA2gWR0B8/qUaAFxGdX2UKGgGaAloD0MI7PgvEAT7XUCUhpRSlGgVTegDaBZHQH01loYekpJ1fZQoaAZoCWgPQwhFLc2tEOYkwJSGlFKUaBVNjQFoFkdAfT/jL0SRKnV9lChoBmgJaA9DCJ33/3HCDGFAlIaUUpRoFU3oA2gWR0B9X+4I8hcJdX2UKGgGaAloD0MIsHJoke01VECUhpRSlGgVTegDaBZHQH1nzot+TeR1fZQoaAZoCWgPQwge3nNgOXpNQJSGlFKUaBVN6ANoFkdAfXqneSB9TnV9lChoBmgJaA9DCDVgkPRp+lhAlIaUUpRoFU3oA2gWR0B9m8DdP+GXdX2UKGgGaAloD0MITwRxHk6hZUCUhpRSlGgVTegDaBZHQH2g2mYSg5B1fZQoaAZoCWgPQwi3tvC8VCdbQJSGlFKUaBVN6ANoFkdAfazm4iHIqHV9lChoBmgJaA9DCBr5vOKpE2RAlIaUUpRoFU3oA2gWR0B9+Ki1y/9HdX2UKGgGaAloD0MI4xjJHqE2MsCUhpRSlGgVTYsBaBZHQH4BCWZ7Xxx1fZQoaAZoCWgPQwjI0RxZ+eNmQJSGlFKUaBVNRAJoFkdAfgGwFC9h7XV9lChoBmgJaA9DCCcR4V8E42VAlIaUUpRoFU3oA2gWR0B+GAyEcsDodX2UKGgGaAloD0MI5Q6byMwBXUCUhpRSlGgVTegDaBZHQH4aLQb+98J1fZQoaAZoCWgPQwiztikeF2daQJSGlFKUaBVN6ANoFkdAfipUIsyzonV9lChoBmgJaA9DCOWzPA/usVVAlIaUUpRoFU3oA2gWR0B+N+QEIPbxdX2UKGgGaAloD0MITn0geediYUCUhpRSlGgVTegDaBZHQH5Ah1cMVlB1fZQoaAZoCWgPQwgzox8Np1gzQJSGlFKUaBVNLAFoFkdAfk0QdS2phnV9lChoBmgJaA9DCPW4b7VO619AlIaUUpRoFU3oA2gWR0B+XBQ+EAYIdX2UKGgGaAloD0MI+S8QBMgBXECUhpRSlGgVTegDaBZHQH5ivSUkfLd1fZQoaAZoCWgPQwjQDOIDO5lWQJSGlFKUaBVN6ANoFkdAfqh05EMLGHV9lChoBmgJaA9DCI/iHHV0lVlAlIaUUpRoFU3oA2gWR0B+y6lO45LidX2UKGgGaAloD0MI2uOFdHjwW0CUhpRSlGgVTegDaBZHQH7pfrB0p3J1fZQoaAZoCWgPQwj/klSmmG8xQJSGlFKUaBVNRgFoFkdAfuuZB9kSVXV9lChoBmgJaA9DCMR6o1aYdWBAlIaUUpRoFU3oA2gWR0B/C3cQAdXDdX2UKGgGaAloD0MI/aIE/QW6YUCUhpRSlGgVTegDaBZHQH8QsMy8BdV1fZQoaAZoCWgPQwiZZU8CG3dhQJSGlFKUaBVN6ANoFkdAfxwhbnoxH3V9lChoBmgJaA9DCDOpoQ3ADVZAlIaUUpRoFU3oA2gWR0B/avbTMJQddX2UKGgGaAloD0MIqmOV0rOQYkCUhpRSlGgVTegDaBZHQH9rkRzzVc51fZQoaAZoCWgPQwg+INCZtKklwJSGlFKUaBVNhAFoFkdAf30jJdSl33V9lChoBmgJaA9DCBpOmZtvPGNAlIaUUpRoFU3oA2gWR0B/gNBmf5DadX2UKGgGaAloD0MIct9qnbjEYECUhpRSlGgVTegDaBZHQH+Ctt/FzdV1fZQoaAZoCWgPQwg9EFmkCQ9lQJSGlFKUaBVN6ANoFkdAf5EkVvddmnV9lChoBmgJaA9DCEDc1avIpl5AlIaUUpRoFU3oA2gWR0B/nNJe3QUpdX2UKGgGaAloD0MIgxYSMDrJYkCUhpRSlGgVTegDaBZHQH+j7Q9ic5N1fZQoaAZoCWgPQwhmaafmcjpmQJSGlFKUaBVN6ANoFkdAf67eMhouf3V9lChoBmgJaA9DCJARUOEI1FZAlIaUUpRoFU3oA2gWR0B/vEC+10DEdX2UKGgGaAloD0MImIV2TrNcYkCUhpRSlGgVTegDaBZHQIABQJRfnfV1fZQoaAZoCWgPQwi6wOWxZrAywJSGlFKUaBVNWwFoFkdAgAWC8WbgCXV9lChoBmgJaA9DCPxuumWHgFhAlIaUUpRoFU3oA2gWR0CAET5RCQcQdX2UKGgGaAloD0MIhqqYSj+8YECUhpRSlGgVTegDaBZHQIAe0uvllsh1fZQoaAZoCWgPQwiOBYVBmYVeQJSGlFKUaBVN6ANoFkdAgDDsOG0u2HV9lChoBmgJaA9DCLWK/tBMfmRAlIaUUpRoFU3oA2gWR0CAM8V+qioLdX2UKGgGaAloD0MIx7ji4ijrY0CUhpRSlGgVTegDaBZHQIA6RdpqREF1fZQoaAZoCWgPQwgzwAXZshJgQJSGlFKUaBVN6ANoFkdAgGXWhqTKT3V9lChoBmgJaA9DCMucLouJPWNAlIaUUpRoFU3oA2gWR0CAZjR7Z39rdX2UKGgGaAloD0MI8SkAxjMPYECUhpRSlGgVTegDaBZHQIBwki6g/Tt1fZQoaAZoCWgPQwhHj9/b9IBiQJSGlFKUaBVN6ANoFkdAgHME6tDD0nV9lChoBmgJaA9DCErRyr3AVV5AlIaUUpRoFU3oA2gWR0CAdD0aIeo2dX2UKGgGaAloD0MIkC3L1+UdYECUhpRSlGgVTegDaBZHQICFWkDZDiR1fZQoaAZoCWgPQwgld9hEZvpdQJSGlFKUaBVN6ANoFkdAgIpbel9Br3V9lChoBmgJaA9DCEEN38K6/l5AlIaUUpRoFU3oA2gWR0CAkYEFGG21dX2UKGgGaAloD0MInInpQqwMYkCUhpRSlGgVTegDaBZHQICaBMFlkH51fZQoaAZoCWgPQwi5/8h06FRiQJSGlFKUaBVN6ANoFkdAgLEh+F10T3V9lChoBmgJaA9DCODYs+cyVQfAlIaUUpRoFU3nAWgWR0CAx59YOlO5dX2UKGgGaAloD0MIai43GOqFXECUhpRSlGgVTegDaBZHQIDI6L2pQ1t1fZQoaAZoCWgPQwgH7kCd8j5jQJSGlFKUaBVN6ANoFkdAgNa0kfLcK3V9lChoBmgJaA9DCORO6WD93/q/lIaUUpRoFU2hAWgWR0CA3ObpeNT+dX2UKGgGaAloD0MIgCvZsRHzW0CUhpRSlGgVTegDaBZHQIDm5XCCSRt1fZQoaAZoCWgPQwggtB6+TAlTQJSGlFKUaBVN6ANoFkdAgPtEjHGS6nV9lChoBmgJaA9DCJIFTODWDFtAlIaUUpRoFU3oA2gWR0CA/oGD+R5kdX2UKGgGaAloD0MIuVM6WH+VYECUhpRSlGgVTegDaBZHQIEFnueBg/l1fZQoaAZoCWgPQwjgufdwyWEtwJSGlFKUaBVNqQFoFkdAgQzSeI2wV3V9lChoBmgJaA9DCBpSRfEqw1lAlIaUUpRoFU3oA2gWR0CBMzlhgE2YdX2UKGgGaAloD0MIuoEC7+SyZUCUhpRSlGgVTegDaBZHQIE9bHwPRRd1fZQoaAZoCWgPQwg1XU90XWhdQJSGlFKUaBVN6ANoFkdAgT+ccMmWt3V9lChoBmgJaA9DCCHkvP+PU15AlIaUUpRoFU3oA2gWR0CBQJ8v24/edX2UKGgGaAloD0MIU5YhjnWhK0CUhpRSlGgVTX4BaBZHQIFKkSXdCVt1fZQoaAZoCWgPQwiR8/4/TsJeQJSGlFKUaBVN6ANoFkdAgVJIcR15jnV9lChoBmgJaA9DCN8WLNUF8FhAlIaUUpRoFU3oA2gWR0CBWEkiUxEfdX2UKGgGaAloD0MIAyUFFsCGX0CUhpRSlGgVTegDaBZHQIFfXP3SKFZ1fZQoaAZoCWgPQwj9TpMZbxs1wJSGlFKUaBVNXgFoFkdAgW8XwTdtVXV9lChoBmgJaA9DCIavr3UpCmBAlIaUUpRoFU3oA2gWR0CBdkIsyzomdX2UKGgGaAloD0MIWdsUjwtbY0CUhpRSlGgVTegDaBZHQIF3OnTAnD11fZQoaAZoCWgPQwjeA3RfTvZjQJSGlFKUaBVN6ANoFkdAgZTRjz7MxHV9lChoBmgJaA9DCJQT7Sqke19AlIaUUpRoFU3oA2gWR0CBmYzv7WNFdX2UKGgGaAloD0MINxd/25O/YUCUhpRSlGgVTegDaBZHQIGgjwpe/pN1fZQoaAZoCWgPQwg8oGzKFVpgQJSGlFKUaBVN6ANoFkdAgbHeZgG8mXV9lChoBmgJaA9DCPqzHykiD2FAlIaUUpRoFU3oA2gWR0CBt6vGIbfhdX2UKGgGaAloD0MITP+SVKaOXUCUhpRSlGgVTegDaBZHQIG9rnRsuWd1fZQoaAZoCWgPQwiFBmLZzE5jQJSGlFKUaBVN6ANoFkdAgc09WIXTE3V9lChoBmgJaA9DCP/NixNfzF5AlIaUUpRoFU3oA2gWR0CB575WzWwvdX2UKGgGaAloD0MId0zdlV3tWECUhpRSlGgVTegDaBZHQIHpgCMglnh1fZQoaAZoCWgPQwj8xAH0+14vQJSGlFKUaBVNSQFoFkdAge+z0HyEtnV9lChoBmgJaA9DCN8a2CrBwVhAlIaUUpRoFU3oA2gWR0CB9ALhrFfidX2UKGgGaAloD0MIfXpsywDzYECUhpRSlGgVTegDaBZHQIH7hVGTcIt1fZQoaAZoCWgPQwhQilbuBc5fQJSGlFKUaBVN6ANoFkdAggFT3RG+bnV9lChoBmgJaA9DCJFhFW9kxGBAlIaUUpRoFU3oA2gWR0CCCI79ycTbdX2UKGgGaAloD0MI7PtwkBCKYkCUhpRSlGgVTegDaBZHQIIX0PQOWjZ1fZQoaAZoCWgPQwixwi0fydhgQJSGlFKUaBVN6ANoFkdAgh71kc0cfnV9lChoBmgJaA9DCK358ZcWl1dAlIaUUpRoFU3oA2gWR0CCH/mTTvy9dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 512, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4cd0e4d90f4d81ede91a7ba0b89aa29a6603667c993e82c3946cca5fb61820f3
|
3 |
+
size 144047
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fd88fe3af80>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd88fe42050>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd88fe420e0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd88fe42170>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fd88fe42200>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fd88fe42290>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd88fe42320>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fd88fe423b0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd88fe42440>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd88fe424d0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd88fe42560>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fd88fe1b090>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 507904,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1652741395.3765626,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAObRQj3hLpK6VUxTNlP3ajEHIwI7wLuAtQAAgD8AAIA/zQiEO08FKrxYMqQ9//PevZAsgb0eUS+/AACAPwAAgD9Nm9q99nBKunHJmTua2aE091gtu7bpsroAAIA/AAAAADNo4b2F68i504CQO0OPLboVCqA7K/vlOgAAgD8AAIA/Ggw+PXtSq7r8JT86UypAttkBWTnru1q5AACAPwAAgD+zjLo9EJU6P5UDGj0HSxa+MEyoOcI9TT0AAAAAAAAAAM3bRr2OIKc/uUqIvcRhX75/1NW8rGGFPQAAAAAAAAAAM4TmPMOJFbqpqYg7lU6GOK78Q7vW8I+5AACAPwAAgD+abAe+8uGePwB3kb1c01e+o37IvV1TuL0AAAAAAAAAAADoEbspRCS6BUPhOvrkzzWMyHs7R0sFugAAgD8AAIA/ZrfuPVKwsbvKzHy8f4fsPHJJ5Tydw8O9AACAPwAAgD9zu8q94wGOP2XBUr50V6e+Rk2luWpMo7wAAAAAAAAAAM0qQLwWF7s+3iexvb8+X74ALja9CA9TvQAAAAAAAAAAAPjmuw9Bej5z1PK88OmOvQGB47zscqm9AAAAAAAAAACmsqu9j9Ynulh0qDrMaRi2nFCSOhL8BLUAAIA/AACAP20MID7PXR68EW4SO6aS+rhW/Yy9UeU2ugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIM1Naf0vhVkCUhpRSlIwBbJRN6AOMAXSUR0B8UmwQlKK6dX2UKGgGaAloD0MIr+yCwTWIZUCUhpRSlGgVTegDaBZHQHybw9FF2FF1fZQoaAZoCWgPQwie6/twkKFdQJSGlFKUaBVN6ANoFkdAfLdWRA8jiXV9lChoBmgJaA9DCPUUOUTcPFtAlIaUUpRoFU3oA2gWR0B8u6RlpXZHdX2UKGgGaAloD0MIKhkAqrgTX0CUhpRSlGgVTegDaBZHQHy9q5PM0P91fZQoaAZoCWgPQwg7HF2lu/FdQJSGlFKUaBVN6ANoFkdAfMx8G9pRGnV9lChoBmgJaA9DCD6WPnRBmVlAlIaUUpRoFU3oA2gWR0B819NqQA+7dX2UKGgGaAloD0MI1XWopiSOZkCUhpRSlGgVTegDaBZHQHze76YVqN91fZQoaAZoCWgPQwiOIQA49kFeQJSGlFKUaBVN6ANoFkdAfPg9q1w5vXV9lChoBmgJaA9DCCf1ZWknUmNAlIaUUpRoFU3oA2gWR0B8/qUaAFxGdX2UKGgGaAloD0MI7PgvEAT7XUCUhpRSlGgVTegDaBZHQH01loYekpJ1fZQoaAZoCWgPQwhFLc2tEOYkwJSGlFKUaBVNjQFoFkdAfT/jL0SRKnV9lChoBmgJaA9DCJ33/3HCDGFAlIaUUpRoFU3oA2gWR0B9X+4I8hcJdX2UKGgGaAloD0MIsHJoke01VECUhpRSlGgVTegDaBZHQH1nzot+TeR1fZQoaAZoCWgPQwge3nNgOXpNQJSGlFKUaBVN6ANoFkdAfXqneSB9TnV9lChoBmgJaA9DCDVgkPRp+lhAlIaUUpRoFU3oA2gWR0B9m8DdP+GXdX2UKGgGaAloD0MITwRxHk6hZUCUhpRSlGgVTegDaBZHQH2g2mYSg5B1fZQoaAZoCWgPQwi3tvC8VCdbQJSGlFKUaBVN6ANoFkdAfazm4iHIqHV9lChoBmgJaA9DCBr5vOKpE2RAlIaUUpRoFU3oA2gWR0B9+Ki1y/9HdX2UKGgGaAloD0MI4xjJHqE2MsCUhpRSlGgVTYsBaBZHQH4BCWZ7Xxx1fZQoaAZoCWgPQwjI0RxZ+eNmQJSGlFKUaBVNRAJoFkdAfgGwFC9h7XV9lChoBmgJaA9DCCcR4V8E42VAlIaUUpRoFU3oA2gWR0B+GAyEcsDodX2UKGgGaAloD0MI5Q6byMwBXUCUhpRSlGgVTegDaBZHQH4aLQb+98J1fZQoaAZoCWgPQwiztikeF2daQJSGlFKUaBVN6ANoFkdAfipUIsyzonV9lChoBmgJaA9DCOWzPA/usVVAlIaUUpRoFU3oA2gWR0B+N+QEIPbxdX2UKGgGaAloD0MITn0geediYUCUhpRSlGgVTegDaBZHQH5Ah1cMVlB1fZQoaAZoCWgPQwgzox8Np1gzQJSGlFKUaBVNLAFoFkdAfk0QdS2phnV9lChoBmgJaA9DCPW4b7VO619AlIaUUpRoFU3oA2gWR0B+XBQ+EAYIdX2UKGgGaAloD0MI+S8QBMgBXECUhpRSlGgVTegDaBZHQH5ivSUkfLd1fZQoaAZoCWgPQwjQDOIDO5lWQJSGlFKUaBVN6ANoFkdAfqh05EMLGHV9lChoBmgJaA9DCI/iHHV0lVlAlIaUUpRoFU3oA2gWR0B+y6lO45LidX2UKGgGaAloD0MI2uOFdHjwW0CUhpRSlGgVTegDaBZHQH7pfrB0p3J1fZQoaAZoCWgPQwj/klSmmG8xQJSGlFKUaBVNRgFoFkdAfuuZB9kSVXV9lChoBmgJaA9DCMR6o1aYdWBAlIaUUpRoFU3oA2gWR0B/C3cQAdXDdX2UKGgGaAloD0MI/aIE/QW6YUCUhpRSlGgVTegDaBZHQH8QsMy8BdV1fZQoaAZoCWgPQwiZZU8CG3dhQJSGlFKUaBVN6ANoFkdAfxwhbnoxH3V9lChoBmgJaA9DCDOpoQ3ADVZAlIaUUpRoFU3oA2gWR0B/avbTMJQddX2UKGgGaAloD0MIqmOV0rOQYkCUhpRSlGgVTegDaBZHQH9rkRzzVc51fZQoaAZoCWgPQwg+INCZtKklwJSGlFKUaBVNhAFoFkdAf30jJdSl33V9lChoBmgJaA9DCBpOmZtvPGNAlIaUUpRoFU3oA2gWR0B/gNBmf5DadX2UKGgGaAloD0MIct9qnbjEYECUhpRSlGgVTegDaBZHQH+Ctt/FzdV1fZQoaAZoCWgPQwg9EFmkCQ9lQJSGlFKUaBVN6ANoFkdAf5EkVvddmnV9lChoBmgJaA9DCEDc1avIpl5AlIaUUpRoFU3oA2gWR0B/nNJe3QUpdX2UKGgGaAloD0MIgxYSMDrJYkCUhpRSlGgVTegDaBZHQH+j7Q9ic5N1fZQoaAZoCWgPQwhmaafmcjpmQJSGlFKUaBVN6ANoFkdAf67eMhouf3V9lChoBmgJaA9DCJARUOEI1FZAlIaUUpRoFU3oA2gWR0B/vEC+10DEdX2UKGgGaAloD0MImIV2TrNcYkCUhpRSlGgVTegDaBZHQIABQJRfnfV1fZQoaAZoCWgPQwi6wOWxZrAywJSGlFKUaBVNWwFoFkdAgAWC8WbgCXV9lChoBmgJaA9DCPxuumWHgFhAlIaUUpRoFU3oA2gWR0CAET5RCQcQdX2UKGgGaAloD0MIhqqYSj+8YECUhpRSlGgVTegDaBZHQIAe0uvllsh1fZQoaAZoCWgPQwiOBYVBmYVeQJSGlFKUaBVN6ANoFkdAgDDsOG0u2HV9lChoBmgJaA9DCLWK/tBMfmRAlIaUUpRoFU3oA2gWR0CAM8V+qioLdX2UKGgGaAloD0MIx7ji4ijrY0CUhpRSlGgVTegDaBZHQIA6RdpqREF1fZQoaAZoCWgPQwgzwAXZshJgQJSGlFKUaBVN6ANoFkdAgGXWhqTKT3V9lChoBmgJaA9DCMucLouJPWNAlIaUUpRoFU3oA2gWR0CAZjR7Z39rdX2UKGgGaAloD0MI8SkAxjMPYECUhpRSlGgVTegDaBZHQIBwki6g/Tt1fZQoaAZoCWgPQwhHj9/b9IBiQJSGlFKUaBVN6ANoFkdAgHME6tDD0nV9lChoBmgJaA9DCErRyr3AVV5AlIaUUpRoFU3oA2gWR0CAdD0aIeo2dX2UKGgGaAloD0MIkC3L1+UdYECUhpRSlGgVTegDaBZHQICFWkDZDiR1fZQoaAZoCWgPQwgld9hEZvpdQJSGlFKUaBVN6ANoFkdAgIpbel9Br3V9lChoBmgJaA9DCEEN38K6/l5AlIaUUpRoFU3oA2gWR0CAkYEFGG21dX2UKGgGaAloD0MInInpQqwMYkCUhpRSlGgVTegDaBZHQICaBMFlkH51fZQoaAZoCWgPQwi5/8h06FRiQJSGlFKUaBVN6ANoFkdAgLEh+F10T3V9lChoBmgJaA9DCODYs+cyVQfAlIaUUpRoFU3nAWgWR0CAx59YOlO5dX2UKGgGaAloD0MIai43GOqFXECUhpRSlGgVTegDaBZHQIDI6L2pQ1t1fZQoaAZoCWgPQwgH7kCd8j5jQJSGlFKUaBVN6ANoFkdAgNa0kfLcK3V9lChoBmgJaA9DCORO6WD93/q/lIaUUpRoFU2hAWgWR0CA3ObpeNT+dX2UKGgGaAloD0MIgCvZsRHzW0CUhpRSlGgVTegDaBZHQIDm5XCCSRt1fZQoaAZoCWgPQwggtB6+TAlTQJSGlFKUaBVN6ANoFkdAgPtEjHGS6nV9lChoBmgJaA9DCJIFTODWDFtAlIaUUpRoFU3oA2gWR0CA/oGD+R5kdX2UKGgGaAloD0MIuVM6WH+VYECUhpRSlGgVTegDaBZHQIEFnueBg/l1fZQoaAZoCWgPQwjgufdwyWEtwJSGlFKUaBVNqQFoFkdAgQzSeI2wV3V9lChoBmgJaA9DCBpSRfEqw1lAlIaUUpRoFU3oA2gWR0CBMzlhgE2YdX2UKGgGaAloD0MIuoEC7+SyZUCUhpRSlGgVTegDaBZHQIE9bHwPRRd1fZQoaAZoCWgPQwg1XU90XWhdQJSGlFKUaBVN6ANoFkdAgT+ccMmWt3V9lChoBmgJaA9DCCHkvP+PU15AlIaUUpRoFU3oA2gWR0CBQJ8v24/edX2UKGgGaAloD0MIU5YhjnWhK0CUhpRSlGgVTX4BaBZHQIFKkSXdCVt1fZQoaAZoCWgPQwiR8/4/TsJeQJSGlFKUaBVN6ANoFkdAgVJIcR15jnV9lChoBmgJaA9DCN8WLNUF8FhAlIaUUpRoFU3oA2gWR0CBWEkiUxEfdX2UKGgGaAloD0MIAyUFFsCGX0CUhpRSlGgVTegDaBZHQIFfXP3SKFZ1fZQoaAZoCWgPQwj9TpMZbxs1wJSGlFKUaBVNXgFoFkdAgW8XwTdtVXV9lChoBmgJaA9DCIavr3UpCmBAlIaUUpRoFU3oA2gWR0CBdkIsyzomdX2UKGgGaAloD0MIWdsUjwtbY0CUhpRSlGgVTegDaBZHQIF3OnTAnD11fZQoaAZoCWgPQwjeA3RfTvZjQJSGlFKUaBVN6ANoFkdAgZTRjz7MxHV9lChoBmgJaA9DCJQT7Sqke19AlIaUUpRoFU3oA2gWR0CBmYzv7WNFdX2UKGgGaAloD0MINxd/25O/YUCUhpRSlGgVTegDaBZHQIGgjwpe/pN1fZQoaAZoCWgPQwg8oGzKFVpgQJSGlFKUaBVN6ANoFkdAgbHeZgG8mXV9lChoBmgJaA9DCPqzHykiD2FAlIaUUpRoFU3oA2gWR0CBt6vGIbfhdX2UKGgGaAloD0MITP+SVKaOXUCUhpRSlGgVTegDaBZHQIG9rnRsuWd1fZQoaAZoCWgPQwiFBmLZzE5jQJSGlFKUaBVN6ANoFkdAgc09WIXTE3V9lChoBmgJaA9DCP/NixNfzF5AlIaUUpRoFU3oA2gWR0CB575WzWwvdX2UKGgGaAloD0MId0zdlV3tWECUhpRSlGgVTegDaBZHQIHpgCMglnh1fZQoaAZoCWgPQwj8xAH0+14vQJSGlFKUaBVNSQFoFkdAge+z0HyEtnV9lChoBmgJaA9DCN8a2CrBwVhAlIaUUpRoFU3oA2gWR0CB9ALhrFfidX2UKGgGaAloD0MIfXpsywDzYECUhpRSlGgVTegDaBZHQIH7hVGTcIt1fZQoaAZoCWgPQwhQilbuBc5fQJSGlFKUaBVN6ANoFkdAggFT3RG+bnV9lChoBmgJaA9DCJFhFW9kxGBAlIaUUpRoFU3oA2gWR0CCCI79ycTbdX2UKGgGaAloD0MI7PtwkBCKYkCUhpRSlGgVTegDaBZHQIIX0PQOWjZ1fZQoaAZoCWgPQwixwi0fydhgQJSGlFKUaBVN6ANoFkdAgh71kc0cfnV9lChoBmgJaA9DCK358ZcWl1dAlIaUUpRoFU3oA2gWR0CCH/mTTvy9dWUu"
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 248,
|
79 |
+
"n_steps": 512,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f03767995c19bd6e667f0aacc07ccea6d504037507112912468d8d2738b35673
|
3 |
+
size 84829
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5d9b3dcf5403aaf535f09227db7f182af50b5fbaad03d4e1bc32a469324af575
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:770cb0eae4712108d0b5a6b419ca650b1bc76753eba3e8f55df07ebb654925f3
|
3 |
+
size 246626
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 151.84453985800312, "std_reward": 64.37221432631067, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-16T23:02:23.830734"}
|