PPO-LunarLander-v2-v11 / config.json
ColabPro's picture
Upload PPO LunarLander-v2 trained agent
3e92886
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f79119193b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7911919440>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f79119194d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7911919560>", "_build": "<function ActorCriticPolicy._build at 0x7f79119195f0>", "forward": "<function ActorCriticPolicy.forward at 0x7f7911919680>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7911919710>", "_predict": "<function ActorCriticPolicy._predict at 0x7f79119197a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7911919830>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f79119198c0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7911919950>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f7911960ae0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 503808, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652745966.98761, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM003zw7Ubo9fIgdPQZiGL4hl7i8BzkTPgAAAAAAAAAADXQTvuPjmj9qTTS/ojXPvsbzgjtKbQ2+AAAAAAAAAABmVvu9LceaPquW/T3CPia+r1hfvLqiZD0AAAAAAAAAABpDsL22/KI/xYKXvq4lUb4jstG9RAabvQAAAAAAAAAARnYWvp6LBD9uydK7Rqkuvtn8c7yzCaY8AAAAAAAAAACahV89sMW+P4We5j4J+z8+0dXWPApNYj4AAAAAAAAAAJo61TynPN8+HlGHO+Cw+71wMd88Ag4DPAAAAAAAAAAAmkgcPQP0oz9uToM+F5HCvr4yoLzeWyg9AAAAAAAAAACza4o+9hacP+KQHj5/8mG++iS/PmV+Ir4AAAAAAAAAAHqBtb7Lg1U/VLCBPF59fr533Fa9+EvRvQAAAAAAAAAAjWPJvbj0rDzTtwg9MjcwvrlCqrwvJ5M8AAAAAAAAAACmXK09nKMuvHtLtj2gcX2+dvi5OkETtz0AAIA/AACAP+Y+J75ME4M/ppUPvqdmbL7+3PW9jrR9PQAAAAAAAAAAAC/dvTbDHT/23+896xlEvrE5nDxCBgC9AAAAAAAAAACz6Ia9XOdUumLiEDR5/I+v9F5nO0FFpLMAAIA/AACAP402Rr7hqcE+6rEuPiXUqL3Fw1o9IXlAOQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIZVBtcCLnb0CUhpRSlIwBbJRNswGMAXSUR0CB+/xGUfPpdX2UKGgGaAloD0MIic+dYH9VakCUhpRSlGgVTd4BaBZHQIH+D6i0v5B1fZQoaAZoCWgPQwhHWFTE6QhtQJSGlFKUaBVN5QFoFkdAgglxplBhQXV9lChoBmgJaA9DCJsBLsjWWHBAlIaUUpRoFU22AWgWR0CCCir6tT1kdX2UKGgGaAloD0MIa9JtiVyNbUCUhpRSlGgVTasBaBZHQIIMDtw71Zl1fZQoaAZoCWgPQwicGf1oOFtEQJSGlFKUaBVNUAFoFkdAgg0LD63y7XV9lChoBmgJaA9DCP95GjBIMG9AlIaUUpRoFU21AWgWR0CCDfkYGdI5dX2UKGgGaAloD0MIz0pa8Q0scUCUhpRSlGgVTWYBaBZHQIIO1ajesPt1fZQoaAZoCWgPQwiRRgVONsBvQJSGlFKUaBVNhAFoFkdAghPNygf2b3V9lChoBmgJaA9DCL8n1qmyXHBAlIaUUpRoFU2LAWgWR0CCFApm29csdX2UKGgGaAloD0MIMGR1q+fOaUCUhpRSlGgVTdEBaBZHQIIaGnl4keJ1fZQoaAZoCWgPQwhGtB1T9w1rQJSGlFKUaBVN6AFoFkdAghx8NQTEi3V9lChoBmgJaA9DCJDBilPtAHFAlIaUUpRoFU2ZAWgWR0CCHcidrftQdX2UKGgGaAloD0MItU/HY4albECUhpRSlGgVTbIBaBZHQIIvQbyYoiN1fZQoaAZoCWgPQwjrq6sCNRJvQJSGlFKUaBVNigFoFkdAgjDgSvkilnV9lChoBmgJaA9DCGcrL/mfz29AlIaUUpRoFU2TAWgWR0CCNdb/wRXfdX2UKGgGaAloD0MIXDl7ZzRXb0CUhpRSlGgVTZYBaBZHQII3HVEuxr11fZQoaAZoCWgPQwiVRPZBlutsQJSGlFKUaBVNgQFoFkdAgjkPH93r2XV9lChoBmgJaA9DCMLAc+/hK25AlIaUUpRoFU2UAWgWR0CCOlEjPfKqdX2UKGgGaAloD0MIxapBmNtPcECUhpRSlGgVTaQBaBZHQII6uyHEdeZ1fZQoaAZoCWgPQwiOO6WDdRNuQJSGlFKUaBVNvwFoFkdAgkPjYh+vyXV9lChoBmgJaA9DCJOP3QVKhnBAlIaUUpRoFU3MAWgWR0CCULzGxUvPdX2UKGgGaAloD0MI6Ba6EoESSUCUhpRSlGgVTZMBaBZHQIJQ3QUpNK11fZQoaAZoCWgPQwh6/Ul8biVpQJSGlFKUaBVNJQJoFkdAglg22G7Bf3V9lChoBmgJaA9DCBY1mIbhKm5AlIaUUpRoFU3ZAWgWR0CCWP4tYjjadX2UKGgGaAloD0MIinQ/pyAAbUCUhpRSlGgVTZABaBZHQIJbdG9YfXB1fZQoaAZoCWgPQwj8NO7Nb1xuQJSGlFKUaBVNtgFoFkdAglywHAymAXV9lChoBmgJaA9DCDv9oC5Sc29AlIaUUpRoFU3sAWgWR0CCZ3TrmhdudX2UKGgGaAloD0MI95MxPsxQa0CUhpRSlGgVTa8BaBZHQIJonikwevJ1fZQoaAZoCWgPQwgwf4XMFcpqQJSGlFKUaBVNpwFoFkdAgmlMY/FBIHV9lChoBmgJaA9DCOXwSScSwm5AlIaUUpRoFU2VAWgWR0CCdP+GXXyzdX2UKGgGaAloD0MIFhObj2vYbkCUhpRSlGgVTdABaBZHQIJ8gTCcf/51fZQoaAZoCWgPQwh5WRML/BltQJSGlFKUaBVNyQFoFkdAgn9rkjopx3V9lChoBmgJaA9DCHxD4bP1c2lAlIaUUpRoFU3ZAWgWR0CCf4yP+4smdX2UKGgGaAloD0MIK2owDUOwb0CUhpRSlGgVTd0BaBZHQIKBGzF+/g11fZQoaAZoCWgPQwgZcQFoFCFvQJSGlFKUaBVNpAFoFkdAgob2Ifr8i3V9lChoBmgJaA9DCHegTnn0qWpAlIaUUpRoFU29AWgWR0CChvU83dbgdX2UKGgGaAloD0MIzJcXYB9iZkCUhpRSlGgVTZYDaBZHQIKHWmrKeTV1fZQoaAZoCWgPQwjR6uQMRcNsQJSGlFKUaBVNugFoFkdAgojF1SwW33V9lChoBmgJaA9DCFmJeVZS9HBAlIaUUpRoFU2TAWgWR0CCiuJZ4fOldX2UKGgGaAloD0MI61Ij9DPVKkCUhpRSlGgVTTsBaBZHQIKYt0zTF2p1fZQoaAZoCWgPQwgQWDm0SBlwQJSGlFKUaBVNvgFoFkdAgpjjwH7gsXV9lChoBmgJaA9DCNl6hnBMfWxAlIaUUpRoFU2/AWgWR0CCm/WNm16WdX2UKGgGaAloD0MIQEzChby1bUCUhpRSlGgVTeoBaBZHQIKezFOwgT11fZQoaAZoCWgPQwjXMEPjiQZvQJSGlFKUaBVNvQFoFkdAgqV6o/A0sXV9lChoBmgJaA9DCOLLRBESBHBAlIaUUpRoFU27AWgWR0CCpfRHf/FSdX2UKGgGaAloD0MIW9JRDmajbECUhpRSlGgVTd0BaBZHQIKr9gSeyzJ1fZQoaAZoCWgPQwiOyk3U0mFtQJSGlFKUaBVNkAFoFkdAgrj9fkWAPXV9lChoBmgJaA9DCLoT7L9Ok2pAlIaUUpRoFU2wAWgWR0CCurBQemvXdX2UKGgGaAloD0MIpgnbT8ZibECUhpRSlGgVTbYBaBZHQIK7KbF0gbJ1fZQoaAZoCWgPQwiKIM7DiTpxQJSGlFKUaBVN8wFoFkdAgr6E4Nqgy3V9lChoBmgJaA9DCEs9C0L5o21AlIaUUpRoFU2gAWgWR0CCwGdf9gnddX2UKGgGaAloD0MIFaqbi7/YakCUhpRSlGgVTaIBaBZHQILCqr5qM3t1fZQoaAZoCWgPQwggtvRoamJwQJSGlFKUaBVNtAFoFkdAgsb2W6bvw3V9lChoBmgJaA9DCLeYnxsalWtAlIaUUpRoFU3tAWgWR0CCyB5prULEdX2UKGgGaAloD0MIAtU/iGRqcECUhpRSlGgVTf8BaBZHQILJVfAsTWZ1fZQoaAZoCWgPQwj9Ma1NY6hnQJSGlFKUaBVNoAFoFkdAgsl6IN3GGXV9lChoBmgJaA9DCKdAZmdR829AlIaUUpRoFU2lAWgWR0CCzLZBcAzYdX2UKGgGaAloD0MIXp8561O/a0CUhpRSlGgVTcoBaBZHQILMxCD28I11fZQoaAZoCWgPQwgBGM+goY5wQJSGlFKUaBVNyAFoFkdAgtp5CWu5jHV9lChoBmgJaA9DCBnmBG2y6nBAlIaUUpRoFU2GAWgWR0CC20Ss8xKydX2UKGgGaAloD0MISih9IeRnbECUhpRSlGgVTZUBaBZHQILb+8274BV1fZQoaAZoCWgPQwhj78UXbdZuQJSGlFKUaBVNhwFoFkdAguNHk1dgOXV9lChoBmgJaA9DCBu62R+oZnBAlIaUUpRoFU3CAWgWR0CC5ZI5HVgAdX2UKGgGaAloD0MIVrq7zgYobkCUhpRSlGgVTZABaBZHQILly0x/NJR1fZQoaAZoCWgPQwgoCvSJvO9tQJSGlFKUaBVNbgFoFkdAgugAlv60pnV9lChoBmgJaA9DCF4PJsVHaXBAlIaUUpRoFU2QAWgWR0CC6SWCVbA2dX2UKGgGaAloD0MIVObmG1G8bUCUhpRSlGgVTYIBaBZHQILrrtb9qDd1fZQoaAZoCWgPQwhcyCO4kThAQJSGlFKUaBVNPwFoFkdAguwnlOoHcHV9lChoBmgJaA9DCMed0sF6fG5AlIaUUpRoFU3jAWgWR0CC7U2ycCo1dX2UKGgGaAloD0MIho+IKZFibUCUhpRSlGgVTZEBaBZHQIL5SUPhAGB1fZQoaAZoCWgPQwjgKk8gbAFyQJSGlFKUaBVNYgFoFkdAgvsK9PDYRXV9lChoBmgJaA9DCMoYH2YvO3FAlIaUUpRoFU2rAWgWR0CC/S0E5hjOdX2UKGgGaAloD0MIlrA2xo6WcECUhpRSlGgVTcsBaBZHQIL+i8nNPgx1fZQoaAZoCWgPQwgGobyPIwtuQJSGlFKUaBVNugFoFkdAgwG4IjW07nV9lChoBmgJaA9DCGdF1ESfGHFAlIaUUpRoFU1vAWgWR0CDApENOM2ndX2UKGgGaAloD0MIBaInZdKebkCUhpRSlGgVTawBaBZHQIMG6Rhc7hh1fZQoaAZoCWgPQwijI7n8B0NvQJSGlFKUaBVNwgFoFkdAgwfih37k4nV9lChoBmgJaA9DCGHe40wTKWtAlIaUUpRoFU2mAWgWR0CDGVDiwSrYdX2UKGgGaAloD0MIE2QEVLh1bUCUhpRSlGgVTaABaBZHQIMbHJgb6xh1fZQoaAZoCWgPQwgKLev+MYhuQJSGlFKUaBVNkgFoFkdAgxyI91U2k3V9lChoBmgJaA9DCLzqAfMQ6WlAlIaUUpRoFU2zAWgWR0CDHTU2DQJHdX2UKGgGaAloD0MIlWWIY91Ja0CUhpRSlGgVTZEBaBZHQIMdxrHlwLp1fZQoaAZoCWgPQwi+FvTeWGhxQJSGlFKUaBVNTgFoFkdAgx/lF2FFlXV9lChoBmgJaA9DCJl/9E0aZXFAlIaUUpRoFU2FAWgWR0CDIS41gpjMdX2UKGgGaAloD0MIX0TbMfUebkCUhpRSlGgVTbgBaBZHQIMj8iY9gWt1fZQoaAZoCWgPQwi8dJMYhE5uQJSGlFKUaBVN5wFoFkdAgyiWVeKKpHV9lChoBmgJaA9DCOnSvyQV8WlAlIaUUpRoFU2WAWgWR0CDKJH2AXl9dX2UKGgGaAloD0MIN+FemTfnakCUhpRSlGgVTXkBaBZHQIMpzojfNzN1fZQoaAZoCWgPQwiH26FhcStxQJSGlFKUaBVNxQFoFkdAgzfIyCWeH3V9lChoBmgJaA9DCEM4ZtmTeG5AlIaUUpRoFU2SAWgWR0CDOTpaA4GVdX2UKGgGaAloD0MI1ESfj7LNa0CUhpRSlGgVTaIBaBZHQIM5jtPYWcl1fZQoaAZoCWgPQwg25J8ZRM1wQJSGlFKUaBVNeAFoFkdAgzrxFqi48XV9lChoBmgJaA9DCJ3xfXGpTEpAlIaUUpRoFU16AWgWR0CDO9ozvZyudX2UKGgGaAloD0MI0ETY8PReMECUhpRSlGgVTT8BaBZHQINEPbRF7Up1fZQoaAZoCWgPQwipFDsaB29vQJSGlFKUaBVNlgFoFkdAg0ToRqXWv3V9lChoBmgJaA9DCI9wWvDihHBAlIaUUpRoFU2GAWgWR0CDR4fHxSYPdX2UKGgGaAloD0MIUn+9wsLdcECUhpRSlGgVTZIBaBZHQINIFMqSX+l1fZQoaAZoCWgPQwgjSnuDL29tQJSGlFKUaBVNewFoFkdAg0iYFRpDeHV9lChoBmgJaA9DCFbVy++0+G1AlIaUUpRoFU2wAWgWR0CDSNi6QNkOdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 492, "n_steps": 256, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}