Upload ametralladora_API.py
Browse files- ametralladora_API.py +229 -0
ametralladora_API.py
ADDED
|
@@ -0,0 +1,229 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#This is an example that uses the websockets api to know when a prompt execution is done
|
| 2 |
+
#Once the prompt execution is done it downloads the images using the /history endpoint
|
| 3 |
+
|
| 4 |
+
import websocket #NOTE: websocket-client (https://github.com/websocket-client/websocket-client)
|
| 5 |
+
import uuid
|
| 6 |
+
import json
|
| 7 |
+
import urllib.request
|
| 8 |
+
import urllib.parse
|
| 9 |
+
|
| 10 |
+
server_address = "127.0.0.1:8188"
|
| 11 |
+
client_id = str(uuid.uuid4())
|
| 12 |
+
|
| 13 |
+
def queue_prompt(prompt, prompt_id):
|
| 14 |
+
p = {"prompt": prompt, "client_id": client_id, "prompt_id": prompt_id}
|
| 15 |
+
data = json.dumps(p).encode('utf-8')
|
| 16 |
+
req = urllib.request.Request("http://{}/prompt".format(server_address), data=data)
|
| 17 |
+
urllib.request.urlopen(req).read()
|
| 18 |
+
|
| 19 |
+
def get_image(filename, subfolder, folder_type):
|
| 20 |
+
data = {"filename": filename, "subfolder": subfolder, "type": folder_type}
|
| 21 |
+
url_values = urllib.parse.urlencode(data)
|
| 22 |
+
with urllib.request.urlopen("http://{}/view?{}".format(server_address, url_values)) as response:
|
| 23 |
+
return response.read()
|
| 24 |
+
|
| 25 |
+
def get_history(prompt_id):
|
| 26 |
+
with urllib.request.urlopen("http://{}/history/{}".format(server_address, prompt_id)) as response:
|
| 27 |
+
return json.loads(response.read())
|
| 28 |
+
|
| 29 |
+
def get_images(ws, prompt):
|
| 30 |
+
prompt_id = str(uuid.uuid4())
|
| 31 |
+
queue_prompt(prompt, prompt_id)
|
| 32 |
+
output_images = {}
|
| 33 |
+
while True:
|
| 34 |
+
out = ws.recv()
|
| 35 |
+
if isinstance(out, str):
|
| 36 |
+
message = json.loads(out)
|
| 37 |
+
if message['type'] == 'executing':
|
| 38 |
+
data = message['data']
|
| 39 |
+
if data['node'] is None and data['prompt_id'] == prompt_id:
|
| 40 |
+
break #Execution is done
|
| 41 |
+
else:
|
| 42 |
+
# If you want to be able to decode the binary stream for latent previews, here is how you can do it:
|
| 43 |
+
# bytesIO = BytesIO(out[8:])
|
| 44 |
+
# preview_image = Image.open(bytesIO) # This is your preview in PIL image format, store it in a global
|
| 45 |
+
continue #previews are binary data
|
| 46 |
+
|
| 47 |
+
history = get_history(prompt_id)[prompt_id]
|
| 48 |
+
for node_id in history['outputs']:
|
| 49 |
+
node_output = history['outputs'][node_id]
|
| 50 |
+
images_output = []
|
| 51 |
+
if 'images' in node_output:
|
| 52 |
+
for image in node_output['images']:
|
| 53 |
+
image_data = get_image(image['filename'], image['subfolder'], image['type'])
|
| 54 |
+
images_output.append(image_data)
|
| 55 |
+
output_images[node_id] = images_output
|
| 56 |
+
|
| 57 |
+
return output_images
|
| 58 |
+
|
| 59 |
+
prompt_text = """
|
| 60 |
+
{
|
| 61 |
+
"3": {
|
| 62 |
+
"inputs": {
|
| 63 |
+
"seed": 473371463840349,
|
| 64 |
+
"steps": 8,
|
| 65 |
+
"cfg": 1,
|
| 66 |
+
"sampler_name": "lcm",
|
| 67 |
+
"scheduler": "beta",
|
| 68 |
+
"denoise": 1,
|
| 69 |
+
"model": [
|
| 70 |
+
"12",
|
| 71 |
+
0
|
| 72 |
+
],
|
| 73 |
+
"positive": [
|
| 74 |
+
"10",
|
| 75 |
+
0
|
| 76 |
+
],
|
| 77 |
+
"negative": [
|
| 78 |
+
"7",
|
| 79 |
+
0
|
| 80 |
+
],
|
| 81 |
+
"latent_image": [
|
| 82 |
+
"16",
|
| 83 |
+
0
|
| 84 |
+
]
|
| 85 |
+
},
|
| 86 |
+
"class_type": "KSampler",
|
| 87 |
+
"_meta": {
|
| 88 |
+
"title": "KSampler"
|
| 89 |
+
}
|
| 90 |
+
},
|
| 91 |
+
"4": {
|
| 92 |
+
"inputs": {
|
| 93 |
+
"ckpt_name": "novaFurryXL_illustriousV110.safetensors"
|
| 94 |
+
},
|
| 95 |
+
"class_type": "CheckpointLoaderSimple",
|
| 96 |
+
"_meta": {
|
| 97 |
+
"title": "Cargar Punto de Control"
|
| 98 |
+
}
|
| 99 |
+
},
|
| 100 |
+
"7": {
|
| 101 |
+
"inputs": {
|
| 102 |
+
"text": "Xx_NEGPROMPT_xX",
|
| 103 |
+
"clip": [
|
| 104 |
+
"11",
|
| 105 |
+
1
|
| 106 |
+
]
|
| 107 |
+
},
|
| 108 |
+
"class_type": "CLIPTextEncode",
|
| 109 |
+
"_meta": {
|
| 110 |
+
"title": "Codificar Texto CLIP (Prompt)"
|
| 111 |
+
}
|
| 112 |
+
},
|
| 113 |
+
"8": {
|
| 114 |
+
"inputs": {
|
| 115 |
+
"samples": [
|
| 116 |
+
"3",
|
| 117 |
+
0
|
| 118 |
+
],
|
| 119 |
+
"vae": [
|
| 120 |
+
"4",
|
| 121 |
+
2
|
| 122 |
+
]
|
| 123 |
+
},
|
| 124 |
+
"class_type": "VAEDecode",
|
| 125 |
+
"_meta": {
|
| 126 |
+
"title": "Decodificaci贸n VAE"
|
| 127 |
+
}
|
| 128 |
+
},
|
| 129 |
+
"9": {
|
| 130 |
+
"inputs": {
|
| 131 |
+
"filename_prefix": "Fast",
|
| 132 |
+
"images": [
|
| 133 |
+
"8",
|
| 134 |
+
0
|
| 135 |
+
]
|
| 136 |
+
},
|
| 137 |
+
"class_type": "SaveImage",
|
| 138 |
+
"_meta": {
|
| 139 |
+
"title": "Guardar Imagen"
|
| 140 |
+
}
|
| 141 |
+
},
|
| 142 |
+
"10": {
|
| 143 |
+
"inputs": {
|
| 144 |
+
"text": "Xx_PROMPT_xX",
|
| 145 |
+
"clip": [
|
| 146 |
+
"11",
|
| 147 |
+
1
|
| 148 |
+
]
|
| 149 |
+
},
|
| 150 |
+
"class_type": "CLIPTextEncodeWithBreak",
|
| 151 |
+
"_meta": {
|
| 152 |
+
"title": "CLIPTextEncode with BREAK syntax"
|
| 153 |
+
}
|
| 154 |
+
},
|
| 155 |
+
"11": {
|
| 156 |
+
"inputs": {
|
| 157 |
+
"lora_name": "dmd2_sdxl_4step_lora_fp16.safetensors",
|
| 158 |
+
"strength_model": 1,
|
| 159 |
+
"strength_clip": 1,
|
| 160 |
+
"model": [
|
| 161 |
+
"4",
|
| 162 |
+
0
|
| 163 |
+
],
|
| 164 |
+
"clip": [
|
| 165 |
+
"4",
|
| 166 |
+
1
|
| 167 |
+
]
|
| 168 |
+
},
|
| 169 |
+
"class_type": "LoraLoader",
|
| 170 |
+
"_meta": {
|
| 171 |
+
"title": "Cargar LoRA"
|
| 172 |
+
}
|
| 173 |
+
},
|
| 174 |
+
"12": {
|
| 175 |
+
"inputs": {
|
| 176 |
+
"block_number": 3,
|
| 177 |
+
"downscale_factor": 2,
|
| 178 |
+
"start_percent": 0,
|
| 179 |
+
"end_percent": 0.5,
|
| 180 |
+
"downscale_after_skip": true,
|
| 181 |
+
"downscale_method": "bicubic",
|
| 182 |
+
"upscale_method": "bicubic",
|
| 183 |
+
"model": [
|
| 184 |
+
"11",
|
| 185 |
+
0
|
| 186 |
+
]
|
| 187 |
+
},
|
| 188 |
+
"class_type": "PatchModelAddDownscale",
|
| 189 |
+
"_meta": {
|
| 190 |
+
"title": "PatchModelAddDownscale (Kohya Deep Shrink)"
|
| 191 |
+
}
|
| 192 |
+
},
|
| 193 |
+
"16": {
|
| 194 |
+
"inputs": {
|
| 195 |
+
"width": 1024,
|
| 196 |
+
"height": 1024,
|
| 197 |
+
"batch_size": 1
|
| 198 |
+
},
|
| 199 |
+
"class_type": "EmptyLatentImage",
|
| 200 |
+
"_meta": {
|
| 201 |
+
"title": "Imagen Latente Vac铆a"
|
| 202 |
+
}
|
| 203 |
+
}
|
| 204 |
+
}
|
| 205 |
+
"""
|
| 206 |
+
|
| 207 |
+
prompt = json.loads(prompt_text)
|
| 208 |
+
#set the text prompt for our positive CLIPTextEncode
|
| 209 |
+
prompt["10"]["inputs"]["text"] = "masterpiece best quality man"
|
| 210 |
+
|
| 211 |
+
#set the text prompt for our negative CLIPTextEncode
|
| 212 |
+
prompt["7"]["inputs"]["text"] = "worst quailty"
|
| 213 |
+
|
| 214 |
+
#set seed
|
| 215 |
+
prompt["3"]["inputs"]["seed"] = 5345435
|
| 216 |
+
|
| 217 |
+
ws = websocket.WebSocket()
|
| 218 |
+
ws.connect("ws://{}/ws?clientId={}".format(server_address, client_id))
|
| 219 |
+
images = get_images(ws, prompt)
|
| 220 |
+
ws.close() # for in case this example is used in an environment where it will be repeatedly called, like in a Gradio app. otherwise, you'll randomly receive connection timeouts
|
| 221 |
+
#Commented out code to display the output images:
|
| 222 |
+
|
| 223 |
+
for node_id in images:
|
| 224 |
+
for image_data in images[node_id]:
|
| 225 |
+
from PIL import Image
|
| 226 |
+
import io
|
| 227 |
+
image = Image.open(io.BytesIO(image_data))
|
| 228 |
+
image.show()
|
| 229 |
+
|