Upload tokenize_dataset.py with huggingface_hub
Browse files- tokenize_dataset.py +308 -0
tokenize_dataset.py
ADDED
|
@@ -0,0 +1,308 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# /// script
|
| 2 |
+
# requires-python = ">=3.10"
|
| 3 |
+
# dependencies = [
|
| 4 |
+
# "torch>=2.0.0",
|
| 5 |
+
# "transformers>=4.50.0",
|
| 6 |
+
# "datasets>=2.14.0",
|
| 7 |
+
# "huggingface_hub",
|
| 8 |
+
# ]
|
| 9 |
+
# ///
|
| 10 |
+
"""
|
| 11 |
+
Tokenize Dataset Script: Prepare Tool Calling Dataset for Training
|
| 12 |
+
|
| 13 |
+
This script tokenizes the nvidia/Nemotron-Agentic-v1 tool_calling dataset
|
| 14 |
+
and uploads it to HuggingFace Hub for reuse.
|
| 15 |
+
|
| 16 |
+
Usage:
|
| 17 |
+
uv run tokenize_dataset.py
|
| 18 |
+
|
| 19 |
+
Can run on CPU - no GPU required!
|
| 20 |
+
"""
|
| 21 |
+
|
| 22 |
+
import os
|
| 23 |
+
import json
|
| 24 |
+
from datasets import load_dataset, Dataset
|
| 25 |
+
from transformers import AutoTokenizer
|
| 26 |
+
from huggingface_hub import hf_hub_download, HfApi, create_repo
|
| 27 |
+
|
| 28 |
+
# ============================================================================
|
| 29 |
+
# CONFIGURATION
|
| 30 |
+
# ============================================================================
|
| 31 |
+
|
| 32 |
+
# Model to get tokenizer from
|
| 33 |
+
BASE_MODEL = "Tesslate/Synthia-S1-27b"
|
| 34 |
+
|
| 35 |
+
# Source dataset
|
| 36 |
+
DATASET_NAME = "nvidia/Nemotron-Agentic-v1"
|
| 37 |
+
DATASET_SPLIT = "tool_calling"
|
| 38 |
+
|
| 39 |
+
# Output tokenized dataset
|
| 40 |
+
TOKENIZED_DATASET_REPO = "Codyfederer/synthia-tool-calling-tokenized"
|
| 41 |
+
TOKENIZED_DATASET_PRIVATE = True
|
| 42 |
+
|
| 43 |
+
# Tokenization settings
|
| 44 |
+
MAX_SEQ_LENGTH = 4096
|
| 45 |
+
|
| 46 |
+
# ============================================================================
|
| 47 |
+
# TOKENIZATION FUNCTIONS
|
| 48 |
+
# ============================================================================
|
| 49 |
+
|
| 50 |
+
def tokenize_conversation(example, tokenizer, max_length):
|
| 51 |
+
"""
|
| 52 |
+
Tokenize a conversation using the model's chat template.
|
| 53 |
+
Returns input_ids, attention_mask, and labels for causal LM training.
|
| 54 |
+
"""
|
| 55 |
+
messages = example["messages"]
|
| 56 |
+
|
| 57 |
+
# Apply chat template to get the full text
|
| 58 |
+
text = tokenizer.apply_chat_template(
|
| 59 |
+
messages,
|
| 60 |
+
tokenize=False,
|
| 61 |
+
add_generation_prompt=False
|
| 62 |
+
)
|
| 63 |
+
|
| 64 |
+
# Tokenize the text
|
| 65 |
+
tokenized = tokenizer(
|
| 66 |
+
text,
|
| 67 |
+
truncation=True,
|
| 68 |
+
max_length=max_length,
|
| 69 |
+
padding=False,
|
| 70 |
+
return_tensors=None,
|
| 71 |
+
)
|
| 72 |
+
|
| 73 |
+
# For causal LM, labels are the same as input_ids
|
| 74 |
+
tokenized["labels"] = tokenized["input_ids"].copy()
|
| 75 |
+
|
| 76 |
+
return tokenized
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
def main():
|
| 80 |
+
print("=" * 60)
|
| 81 |
+
print("Tokenize Dataset for Tool Calling Training")
|
| 82 |
+
print("=" * 60)
|
| 83 |
+
|
| 84 |
+
# Get HF username
|
| 85 |
+
from huggingface_hub import whoami
|
| 86 |
+
try:
|
| 87 |
+
username = whoami()["name"]
|
| 88 |
+
print(f"Logged in as: {username}")
|
| 89 |
+
except Exception as e:
|
| 90 |
+
print(f"ERROR: Not logged in to HF Hub ({e})")
|
| 91 |
+
print("Run 'huggingface-cli login' first")
|
| 92 |
+
return
|
| 93 |
+
|
| 94 |
+
# -------------------------------------------------------------------------
|
| 95 |
+
# Load Tokenizer
|
| 96 |
+
# -------------------------------------------------------------------------
|
| 97 |
+
print(f"\nLoading tokenizer from {BASE_MODEL}...")
|
| 98 |
+
|
| 99 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
| 100 |
+
BASE_MODEL,
|
| 101 |
+
trust_remote_code=True,
|
| 102 |
+
padding_side="right",
|
| 103 |
+
)
|
| 104 |
+
|
| 105 |
+
if tokenizer.pad_token is None:
|
| 106 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 107 |
+
tokenizer.pad_token_id = tokenizer.eos_token_id
|
| 108 |
+
|
| 109 |
+
print(f"Vocab size: {len(tokenizer):,}")
|
| 110 |
+
|
| 111 |
+
# -------------------------------------------------------------------------
|
| 112 |
+
# Load Source Dataset
|
| 113 |
+
# -------------------------------------------------------------------------
|
| 114 |
+
print(f"\nLoading dataset: {DATASET_NAME} ({DATASET_SPLIT} split)...")
|
| 115 |
+
|
| 116 |
+
# Download the JSONL file
|
| 117 |
+
jsonl_file = f"data/{DATASET_SPLIT}.jsonl"
|
| 118 |
+
print(f"Downloading {jsonl_file}...")
|
| 119 |
+
|
| 120 |
+
local_path = hf_hub_download(
|
| 121 |
+
repo_id=DATASET_NAME,
|
| 122 |
+
filename=jsonl_file,
|
| 123 |
+
repo_type="dataset"
|
| 124 |
+
)
|
| 125 |
+
print(f"Downloaded to: {local_path}")
|
| 126 |
+
|
| 127 |
+
# Load and process JSONL
|
| 128 |
+
print("Loading and processing JSONL file...")
|
| 129 |
+
processed_examples = []
|
| 130 |
+
skipped = 0
|
| 131 |
+
|
| 132 |
+
with open(local_path, 'r', encoding='utf-8') as f:
|
| 133 |
+
for line_num, line in enumerate(f):
|
| 134 |
+
if line_num % 50000 == 0:
|
| 135 |
+
print(f" Processed {line_num:,} lines...")
|
| 136 |
+
try:
|
| 137 |
+
example = json.loads(line.strip())
|
| 138 |
+
messages = example.get("messages", [])
|
| 139 |
+
|
| 140 |
+
# Convert messages to consistent format
|
| 141 |
+
formatted_messages = []
|
| 142 |
+
for msg in messages:
|
| 143 |
+
role = msg.get("role", "user")
|
| 144 |
+
content = msg.get("content", "")
|
| 145 |
+
|
| 146 |
+
# Handle content that might be a list or complex object
|
| 147 |
+
if isinstance(content, list):
|
| 148 |
+
parts = []
|
| 149 |
+
for item in content:
|
| 150 |
+
if isinstance(item, dict):
|
| 151 |
+
if "text" in item:
|
| 152 |
+
parts.append(item["text"])
|
| 153 |
+
else:
|
| 154 |
+
parts.append(json.dumps(item))
|
| 155 |
+
else:
|
| 156 |
+
parts.append(str(item))
|
| 157 |
+
content = "\n".join(parts) if parts else ""
|
| 158 |
+
elif isinstance(content, dict):
|
| 159 |
+
content = json.dumps(content)
|
| 160 |
+
elif content is None:
|
| 161 |
+
content = ""
|
| 162 |
+
else:
|
| 163 |
+
content = str(content)
|
| 164 |
+
|
| 165 |
+
formatted_messages.append({
|
| 166 |
+
"role": role,
|
| 167 |
+
"content": content
|
| 168 |
+
})
|
| 169 |
+
|
| 170 |
+
# Merge consecutive messages with same role
|
| 171 |
+
if formatted_messages:
|
| 172 |
+
merged_messages = []
|
| 173 |
+
for msg in formatted_messages:
|
| 174 |
+
role = msg["role"]
|
| 175 |
+
content = msg["content"]
|
| 176 |
+
|
| 177 |
+
# Map tool role to user
|
| 178 |
+
if role == "tool":
|
| 179 |
+
role = "user"
|
| 180 |
+
content = f"[Tool Result]\n{content}"
|
| 181 |
+
|
| 182 |
+
if merged_messages and merged_messages[-1]["role"] == role:
|
| 183 |
+
merged_messages[-1]["content"] += f"\n\n{content}"
|
| 184 |
+
else:
|
| 185 |
+
merged_messages.append({"role": role, "content": content})
|
| 186 |
+
|
| 187 |
+
# Ensure conversation starts with user
|
| 188 |
+
if merged_messages and merged_messages[0]["role"] != "user":
|
| 189 |
+
merged_messages.insert(0, {"role": "user", "content": "[Start]"})
|
| 190 |
+
|
| 191 |
+
processed_examples.append({"messages": merged_messages})
|
| 192 |
+
|
| 193 |
+
except Exception as e:
|
| 194 |
+
skipped += 1
|
| 195 |
+
if skipped < 5:
|
| 196 |
+
print(f" Warning: Skipped line {line_num}: {e}")
|
| 197 |
+
|
| 198 |
+
print(f"Loaded {len(processed_examples):,} examples (skipped {skipped})")
|
| 199 |
+
|
| 200 |
+
# Create dataset
|
| 201 |
+
dataset = Dataset.from_list(processed_examples)
|
| 202 |
+
print(f"Dataset size: {len(dataset):,} examples")
|
| 203 |
+
|
| 204 |
+
# Create train/eval split
|
| 205 |
+
split_dataset = dataset.train_test_split(test_size=0.02, seed=42)
|
| 206 |
+
train_dataset = split_dataset["train"]
|
| 207 |
+
eval_dataset = split_dataset["test"]
|
| 208 |
+
|
| 209 |
+
print(f"Train samples: {len(train_dataset):,}")
|
| 210 |
+
print(f"Eval samples: {len(eval_dataset):,}")
|
| 211 |
+
|
| 212 |
+
# -------------------------------------------------------------------------
|
| 213 |
+
# Tokenize Dataset
|
| 214 |
+
# -------------------------------------------------------------------------
|
| 215 |
+
print(f"\nTokenizing dataset with max_length={MAX_SEQ_LENGTH}...")
|
| 216 |
+
print("This may take a while for large datasets...")
|
| 217 |
+
|
| 218 |
+
train_dataset = train_dataset.map(
|
| 219 |
+
lambda x: tokenize_conversation(x, tokenizer, MAX_SEQ_LENGTH),
|
| 220 |
+
remove_columns=["messages"],
|
| 221 |
+
num_proc=4,
|
| 222 |
+
desc="Tokenizing train",
|
| 223 |
+
)
|
| 224 |
+
|
| 225 |
+
eval_dataset = eval_dataset.map(
|
| 226 |
+
lambda x: tokenize_conversation(x, tokenizer, MAX_SEQ_LENGTH),
|
| 227 |
+
remove_columns=["messages"],
|
| 228 |
+
num_proc=4,
|
| 229 |
+
desc="Tokenizing eval",
|
| 230 |
+
)
|
| 231 |
+
|
| 232 |
+
print(f"Tokenization complete!")
|
| 233 |
+
print(f"Train dataset columns: {train_dataset.column_names}")
|
| 234 |
+
print(f"Sample input_ids length: {len(train_dataset[0]['input_ids'])}")
|
| 235 |
+
|
| 236 |
+
# -------------------------------------------------------------------------
|
| 237 |
+
# Upload to Hub
|
| 238 |
+
# -------------------------------------------------------------------------
|
| 239 |
+
print(f"\nUploading TOKENIZED dataset to Hub: {TOKENIZED_DATASET_REPO}")
|
| 240 |
+
|
| 241 |
+
# Create repo
|
| 242 |
+
api = HfApi()
|
| 243 |
+
try:
|
| 244 |
+
create_repo(
|
| 245 |
+
TOKENIZED_DATASET_REPO,
|
| 246 |
+
repo_type="dataset",
|
| 247 |
+
private=TOKENIZED_DATASET_PRIVATE,
|
| 248 |
+
exist_ok=True
|
| 249 |
+
)
|
| 250 |
+
print(f" Created/verified repo (private={TOKENIZED_DATASET_PRIVATE})")
|
| 251 |
+
|
| 252 |
+
if TOKENIZED_DATASET_PRIVATE:
|
| 253 |
+
try:
|
| 254 |
+
api.update_repo_visibility(
|
| 255 |
+
TOKENIZED_DATASET_REPO,
|
| 256 |
+
repo_type="dataset",
|
| 257 |
+
private=True
|
| 258 |
+
)
|
| 259 |
+
except Exception:
|
| 260 |
+
pass
|
| 261 |
+
except Exception as e:
|
| 262 |
+
print(f" Repo note: {e}")
|
| 263 |
+
|
| 264 |
+
# Reset format for serialization
|
| 265 |
+
train_dataset.reset_format()
|
| 266 |
+
eval_dataset.reset_format()
|
| 267 |
+
|
| 268 |
+
# Verify data
|
| 269 |
+
print(f" Verifying tokenized data...")
|
| 270 |
+
print(f" Train columns: {train_dataset.column_names}")
|
| 271 |
+
print(f" Sample input_ids type: {type(train_dataset[0]['input_ids'])}")
|
| 272 |
+
print(f" Sample input_ids length: {len(train_dataset[0]['input_ids'])}")
|
| 273 |
+
print(f" First 10 tokens: {train_dataset[0]['input_ids'][:10]}")
|
| 274 |
+
|
| 275 |
+
# Push to Hub
|
| 276 |
+
print(f" Pushing train split ({len(train_dataset):,} examples)...")
|
| 277 |
+
train_dataset.push_to_hub(
|
| 278 |
+
TOKENIZED_DATASET_REPO,
|
| 279 |
+
split="train",
|
| 280 |
+
)
|
| 281 |
+
|
| 282 |
+
print(f" Pushing test split ({len(eval_dataset):,} examples)...")
|
| 283 |
+
eval_dataset.push_to_hub(
|
| 284 |
+
TOKENIZED_DATASET_REPO,
|
| 285 |
+
split="test",
|
| 286 |
+
)
|
| 287 |
+
|
| 288 |
+
print(f"\n" + "=" * 60)
|
| 289 |
+
print(f"SUCCESS! Tokenized dataset saved to:")
|
| 290 |
+
print(f" https://huggingface.co/datasets/{TOKENIZED_DATASET_REPO}")
|
| 291 |
+
print(f"=" * 60)
|
| 292 |
+
|
| 293 |
+
# Verify upload
|
| 294 |
+
print("\nVerifying upload...")
|
| 295 |
+
try:
|
| 296 |
+
from datasets import load_dataset as verify_load
|
| 297 |
+
verify_ds = verify_load(TOKENIZED_DATASET_REPO, split="train", streaming=True)
|
| 298 |
+
sample = next(iter(verify_ds))
|
| 299 |
+
if "input_ids" in sample:
|
| 300 |
+
print(f" VERIFIED: Dataset contains input_ids with {len(sample['input_ids'])} tokens")
|
| 301 |
+
else:
|
| 302 |
+
print(f" WARNING: input_ids not found in columns: {list(sample.keys())}")
|
| 303 |
+
except Exception as ve:
|
| 304 |
+
print(f" Could not verify: {ve}")
|
| 305 |
+
|
| 306 |
+
|
| 307 |
+
if __name__ == "__main__":
|
| 308 |
+
main()
|