Upload train_h100.py with huggingface_hub
Browse files- train_h100.py +188 -0
train_h100.py
ADDED
|
@@ -0,0 +1,188 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# /// script
|
| 2 |
+
# requires-python = ">=3.10"
|
| 3 |
+
# dependencies = [
|
| 4 |
+
# "torch>=2.0.0",
|
| 5 |
+
# "transformers>=4.50.0",
|
| 6 |
+
# "datasets>=2.14.0",
|
| 7 |
+
# "peft>=0.7.0",
|
| 8 |
+
# "accelerate>=0.25.0",
|
| 9 |
+
# "trackio",
|
| 10 |
+
# "huggingface_hub",
|
| 11 |
+
# ]
|
| 12 |
+
# ///
|
| 13 |
+
"""
|
| 14 |
+
LoRA Fine-tuning: Add Tool Calling to Synthia-S1-27b
|
| 15 |
+
Using pre-tokenized data from Codyfederer/synthia-tool-calling-tokenized
|
| 16 |
+
Optimized for H100 80GB
|
| 17 |
+
"""
|
| 18 |
+
|
| 19 |
+
import os
|
| 20 |
+
from datasets import load_dataset
|
| 21 |
+
from transformers import (
|
| 22 |
+
AutoTokenizer,
|
| 23 |
+
AutoModelForCausalLM,
|
| 24 |
+
DataCollatorForLanguageModeling,
|
| 25 |
+
Trainer,
|
| 26 |
+
TrainingArguments,
|
| 27 |
+
)
|
| 28 |
+
from peft import LoraConfig, get_peft_model
|
| 29 |
+
import torch
|
| 30 |
+
import trackio
|
| 31 |
+
from huggingface_hub import whoami
|
| 32 |
+
|
| 33 |
+
# Configuration
|
| 34 |
+
BASE_MODEL = "Tesslate/Synthia-S1-27b"
|
| 35 |
+
OUTPUT_MODEL = "Synthia-S1-27b-tool-calling"
|
| 36 |
+
TOKENIZED_DATASET = "Codyfederer/synthia-tool-calling-tokenized"
|
| 37 |
+
MAX_SEQ_LENGTH = 4096
|
| 38 |
+
|
| 39 |
+
# H100 optimized parameters
|
| 40 |
+
BATCH_SIZE = 4 # Higher batch size for H100 80GB
|
| 41 |
+
GRADIENT_ACCUMULATION = 8 # Effective batch = 32
|
| 42 |
+
LEARNING_RATE = 2e-4
|
| 43 |
+
NUM_EPOCHS = 1
|
| 44 |
+
LORA_R = 64
|
| 45 |
+
LORA_ALPHA = 128
|
| 46 |
+
|
| 47 |
+
print("=" * 60)
|
| 48 |
+
print("Tool Calling Fine-tuning for Synthia-S1-27b (H100)")
|
| 49 |
+
print("=" * 60)
|
| 50 |
+
|
| 51 |
+
# Initialize Trackio
|
| 52 |
+
trackio.init(project="synthia-tool-calling")
|
| 53 |
+
|
| 54 |
+
# Get HF username
|
| 55 |
+
try:
|
| 56 |
+
username = whoami()["name"]
|
| 57 |
+
hub_model_id = f"{username}/{OUTPUT_MODEL}"
|
| 58 |
+
print(f"Will push to: {hub_model_id}")
|
| 59 |
+
except Exception as e:
|
| 60 |
+
print(f"Error getting username: {e}")
|
| 61 |
+
raise
|
| 62 |
+
|
| 63 |
+
# Load tokenizer
|
| 64 |
+
print(f"\nLoading tokenizer from {BASE_MODEL}...")
|
| 65 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
| 66 |
+
BASE_MODEL,
|
| 67 |
+
trust_remote_code=True,
|
| 68 |
+
padding_side="right",
|
| 69 |
+
)
|
| 70 |
+
if tokenizer.pad_token is None:
|
| 71 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 72 |
+
tokenizer.pad_token_id = tokenizer.eos_token_id
|
| 73 |
+
print(f"Vocab size: {len(tokenizer):,}")
|
| 74 |
+
|
| 75 |
+
# Load pre-tokenized dataset
|
| 76 |
+
print(f"\nLoading pre-tokenized dataset: {TOKENIZED_DATASET}")
|
| 77 |
+
tokenized_ds = load_dataset(TOKENIZED_DATASET)
|
| 78 |
+
|
| 79 |
+
train_dataset = tokenized_ds["train"]
|
| 80 |
+
eval_dataset = tokenized_ds.get("test", tokenized_ds.get("validation"))
|
| 81 |
+
|
| 82 |
+
print(f"Train samples: {len(train_dataset):,}")
|
| 83 |
+
if eval_dataset:
|
| 84 |
+
print(f"Eval samples: {len(eval_dataset):,}")
|
| 85 |
+
|
| 86 |
+
# Truncate to MAX_SEQ_LENGTH
|
| 87 |
+
def truncate_example(example):
|
| 88 |
+
return {
|
| 89 |
+
"input_ids": example["input_ids"][:MAX_SEQ_LENGTH],
|
| 90 |
+
"attention_mask": example["attention_mask"][:MAX_SEQ_LENGTH],
|
| 91 |
+
"labels": example["labels"][:MAX_SEQ_LENGTH] if "labels" in example else example["input_ids"][:MAX_SEQ_LENGTH],
|
| 92 |
+
}
|
| 93 |
+
|
| 94 |
+
print(f"Truncating to max_length={MAX_SEQ_LENGTH}...")
|
| 95 |
+
train_dataset = train_dataset.map(truncate_example, desc="Truncating train")
|
| 96 |
+
if eval_dataset:
|
| 97 |
+
eval_dataset = eval_dataset.map(truncate_example, desc="Truncating eval")
|
| 98 |
+
|
| 99 |
+
# Load model
|
| 100 |
+
print(f"\nLoading model: {BASE_MODEL}...")
|
| 101 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 102 |
+
BASE_MODEL,
|
| 103 |
+
device_map="auto",
|
| 104 |
+
trust_remote_code=True,
|
| 105 |
+
torch_dtype=torch.bfloat16,
|
| 106 |
+
attn_implementation="sdpa",
|
| 107 |
+
)
|
| 108 |
+
print(f"Model loaded. Parameters: {model.num_parameters():,}")
|
| 109 |
+
|
| 110 |
+
# Configure LoRA
|
| 111 |
+
print(f"\nConfiguring LoRA (r={LORA_R}, alpha={LORA_ALPHA})...")
|
| 112 |
+
lora_config = LoraConfig(
|
| 113 |
+
r=LORA_R,
|
| 114 |
+
lora_alpha=LORA_ALPHA,
|
| 115 |
+
lora_dropout=0.05,
|
| 116 |
+
target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"],
|
| 117 |
+
bias="none",
|
| 118 |
+
task_type="CAUSAL_LM",
|
| 119 |
+
)
|
| 120 |
+
model = get_peft_model(model, lora_config)
|
| 121 |
+
model.print_trainable_parameters()
|
| 122 |
+
|
| 123 |
+
# Training arguments - H100 optimized
|
| 124 |
+
print("\nConfiguring training...")
|
| 125 |
+
training_args = TrainingArguments(
|
| 126 |
+
output_dir=f"./{OUTPUT_MODEL}",
|
| 127 |
+
num_train_epochs=NUM_EPOCHS,
|
| 128 |
+
per_device_train_batch_size=BATCH_SIZE,
|
| 129 |
+
per_device_eval_batch_size=BATCH_SIZE,
|
| 130 |
+
gradient_accumulation_steps=GRADIENT_ACCUMULATION,
|
| 131 |
+
learning_rate=LEARNING_RATE,
|
| 132 |
+
lr_scheduler_type="cosine",
|
| 133 |
+
warmup_ratio=0.03,
|
| 134 |
+
weight_decay=0.01,
|
| 135 |
+
optim="adamw_torch",
|
| 136 |
+
gradient_checkpointing=True,
|
| 137 |
+
gradient_checkpointing_kwargs={"use_reentrant": False},
|
| 138 |
+
max_grad_norm=1.0,
|
| 139 |
+
eval_strategy="steps",
|
| 140 |
+
eval_steps=500,
|
| 141 |
+
save_strategy="steps",
|
| 142 |
+
save_steps=500,
|
| 143 |
+
save_total_limit=3,
|
| 144 |
+
push_to_hub=True,
|
| 145 |
+
hub_model_id=hub_model_id,
|
| 146 |
+
hub_strategy="checkpoint",
|
| 147 |
+
logging_steps=10,
|
| 148 |
+
report_to="trackio",
|
| 149 |
+
run_name=f"synthia-tool-calling-lora-r{LORA_R}",
|
| 150 |
+
bf16=True,
|
| 151 |
+
dataloader_num_workers=4,
|
| 152 |
+
dataloader_pin_memory=True,
|
| 153 |
+
seed=42,
|
| 154 |
+
remove_unused_columns=False,
|
| 155 |
+
)
|
| 156 |
+
|
| 157 |
+
# Initialize trainer
|
| 158 |
+
print("\nInitializing trainer...")
|
| 159 |
+
data_collator = DataCollatorForLanguageModeling(
|
| 160 |
+
tokenizer=tokenizer,
|
| 161 |
+
mlm=False,
|
| 162 |
+
)
|
| 163 |
+
|
| 164 |
+
trainer = Trainer(
|
| 165 |
+
model=model,
|
| 166 |
+
args=training_args,
|
| 167 |
+
train_dataset=train_dataset,
|
| 168 |
+
eval_dataset=eval_dataset,
|
| 169 |
+
tokenizer=tokenizer,
|
| 170 |
+
data_collator=data_collator,
|
| 171 |
+
)
|
| 172 |
+
|
| 173 |
+
# Train
|
| 174 |
+
print("\n" + "=" * 60)
|
| 175 |
+
print("Starting training...")
|
| 176 |
+
print("=" * 60 + "\n")
|
| 177 |
+
trainer.train()
|
| 178 |
+
|
| 179 |
+
# Save and push
|
| 180 |
+
print("\nSaving final model...")
|
| 181 |
+
trainer.save_model()
|
| 182 |
+
print(f"Pushing to Hub: {hub_model_id}")
|
| 183 |
+
trainer.push_to_hub()
|
| 184 |
+
|
| 185 |
+
print(f"\n" + "=" * 60)
|
| 186 |
+
print(f"Training complete!")
|
| 187 |
+
print(f"Model available at: https://huggingface.co/{hub_model_id}")
|
| 188 |
+
print("=" * 60)
|