CocoRoF/ModernBERT-SimCSE-multitask_v03-distill
Browse files- 1_Pooling/config.json +10 -0
- 2_Dense/config.json +1 -0
- 2_Dense/model.safetensors +3 -0
- README.md +892 -0
- config_sentence_transformers.json +10 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
2_Dense/config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"in_features": 768, "out_features": 1024, "bias": true, "activation_function": "torch.nn.modules.activation.Tanh"}
|
2_Dense/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:98502da6c4dbee1502fa8ebc31ff356b5762eb792a899d4e5339d3cd3a7c0ae4
|
3 |
+
size 3149984
|
README.md
ADDED
@@ -0,0 +1,892 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- sentence-transformers
|
4 |
+
- sentence-similarity
|
5 |
+
- feature-extraction
|
6 |
+
- generated_from_trainer
|
7 |
+
- dataset_size:449904
|
8 |
+
- loss:CosineSimilarityLoss
|
9 |
+
base_model: CocoRoF/ModernBERT-SimCSE-multitask_v03-retry
|
10 |
+
widget:
|
11 |
+
- source_sentence: 우리는 움직이는 동행 우주 정지 좌표계에 비례하여 이동하고 있습니다 ... 약 371km / s에서 별자리 leo
|
12 |
+
쪽으로. "
|
13 |
+
sentences:
|
14 |
+
- 두 마리의 독수리가 가지에 앉는다.
|
15 |
+
- 다른 물체와는 관련이 없는 '정지'는 없다.
|
16 |
+
- 소녀는 버스의 열린 문 앞에 서 있다.
|
17 |
+
- source_sentence: 숲에는 개들이 있다.
|
18 |
+
sentences:
|
19 |
+
- 양을 보는 아이들.
|
20 |
+
- 여왕의 배우자를 "왕"이라고 부르지 않는 것은 아주 좋은 이유가 있다. 왜냐하면 그들은 왕이 아니기 때문이다.
|
21 |
+
- 개들은 숲속에 혼자 있다.
|
22 |
+
- source_sentence: '첫째, 두 가지 다른 종류의 대시가 있다는 것을 알아야 합니다 : en 대시와 em 대시.'
|
23 |
+
sentences:
|
24 |
+
- 그들은 그 물건들을 집 주변에 두고 가거나 집의 정리를 해칠 의도가 없다.
|
25 |
+
- 세미콜론은 혼자 있을 수 있는 문장에 참여하는데 사용되지만, 그들의 관계를 강조하기 위해 결합됩니다.
|
26 |
+
- 그의 남동생이 지켜보는 동안 집 앞에서 트럼펫을 연주하는 금발의 아이.
|
27 |
+
- source_sentence: 한 여성이 생선 껍질을 벗기고 있다.
|
28 |
+
sentences:
|
29 |
+
- 한 남자가 수영장으로 뛰어들었다.
|
30 |
+
- 한 여성이 프라이팬에 노란 혼합물을 부어 넣고 있다.
|
31 |
+
- 두 마리의 갈색 개가 눈 속에서 서로 놀고 있다.
|
32 |
+
- source_sentence: 버스가 바쁜 길을 따라 운전한다.
|
33 |
+
sentences:
|
34 |
+
- 우리와 같은 태양계가 은하계 밖에서 존재할 수도 있을 것입니다.
|
35 |
+
- 그 여자는 데이트하러 가는 중이다.
|
36 |
+
- 녹색 버스가 도로를 따라 내려간다.
|
37 |
+
datasets:
|
38 |
+
- x2bee/misc_sts_pairs_v2_kor_kosimcse
|
39 |
+
pipeline_tag: sentence-similarity
|
40 |
+
library_name: sentence-transformers
|
41 |
+
metrics:
|
42 |
+
- pearson_cosine
|
43 |
+
- spearman_cosine
|
44 |
+
- pearson_euclidean
|
45 |
+
- spearman_euclidean
|
46 |
+
- pearson_manhattan
|
47 |
+
- spearman_manhattan
|
48 |
+
- pearson_dot
|
49 |
+
- spearman_dot
|
50 |
+
- pearson_max
|
51 |
+
- spearman_max
|
52 |
+
model-index:
|
53 |
+
- name: SentenceTransformer based on CocoRoF/ModernBERT-SimCSE-multitask_v03-retry
|
54 |
+
results:
|
55 |
+
- task:
|
56 |
+
type: semantic-similarity
|
57 |
+
name: Semantic Similarity
|
58 |
+
dataset:
|
59 |
+
name: sts dev
|
60 |
+
type: sts_dev
|
61 |
+
metrics:
|
62 |
+
- type: pearson_cosine
|
63 |
+
value: 0.8220874775898197
|
64 |
+
name: Pearson Cosine
|
65 |
+
- type: spearman_cosine
|
66 |
+
value: 0.8282368218808581
|
67 |
+
name: Spearman Cosine
|
68 |
+
- type: pearson_euclidean
|
69 |
+
value: 0.7929031352092236
|
70 |
+
name: Pearson Euclidean
|
71 |
+
- type: spearman_euclidean
|
72 |
+
value: 0.7979913252239026
|
73 |
+
name: Spearman Euclidean
|
74 |
+
- type: pearson_manhattan
|
75 |
+
value: 0.7936882861676204
|
76 |
+
name: Pearson Manhattan
|
77 |
+
- type: spearman_manhattan
|
78 |
+
value: 0.7996541111809876
|
79 |
+
name: Spearman Manhattan
|
80 |
+
- type: pearson_dot
|
81 |
+
value: 0.7010536213435227
|
82 |
+
name: Pearson Dot
|
83 |
+
- type: spearman_dot
|
84 |
+
value: 0.6844746263331734
|
85 |
+
name: Spearman Dot
|
86 |
+
- type: pearson_max
|
87 |
+
value: 0.8220874775898197
|
88 |
+
name: Pearson Max
|
89 |
+
- type: spearman_max
|
90 |
+
value: 0.8282368218808581
|
91 |
+
name: Spearman Max
|
92 |
+
---
|
93 |
+
|
94 |
+
# SentenceTransformer based on CocoRoF/ModernBERT-SimCSE-multitask_v03-retry
|
95 |
+
|
96 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [CocoRoF/ModernBERT-SimCSE-multitask_v03-retry](https://huggingface.co/CocoRoF/ModernBERT-SimCSE-multitask_v03-retry) on the [misc_sts_pairs_v2_kor_kosimcse](https://huggingface.co/datasets/x2bee/misc_sts_pairs_v2_kor_kosimcse) dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
97 |
+
|
98 |
+
## Model Details
|
99 |
+
|
100 |
+
### Model Description
|
101 |
+
- **Model Type:** Sentence Transformer
|
102 |
+
- **Base model:** [CocoRoF/ModernBERT-SimCSE-multitask_v03-retry](https://huggingface.co/CocoRoF/ModernBERT-SimCSE-multitask_v03-retry) <!-- at revision 8ea8efa5d7e41826a9093b28badc01ed44d01ace -->
|
103 |
+
- **Maximum Sequence Length:** 2048 tokens
|
104 |
+
- **Output Dimensionality:** 1024 dimensions
|
105 |
+
- **Similarity Function:** Cosine Similarity
|
106 |
+
- **Training Dataset:**
|
107 |
+
- [misc_sts_pairs_v2_kor_kosimcse](https://huggingface.co/datasets/x2bee/misc_sts_pairs_v2_kor_kosimcse)
|
108 |
+
<!-- - **Language:** Unknown -->
|
109 |
+
<!-- - **License:** Unknown -->
|
110 |
+
|
111 |
+
### Model Sources
|
112 |
+
|
113 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
114 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
115 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
116 |
+
|
117 |
+
### Full Model Architecture
|
118 |
+
|
119 |
+
```
|
120 |
+
SentenceTransformer(
|
121 |
+
(0): Transformer({'max_seq_length': 2048, 'do_lower_case': False}) with Transformer model: ModernBertModel
|
122 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
123 |
+
(2): Dense({'in_features': 768, 'out_features': 1024, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
|
124 |
+
)
|
125 |
+
```
|
126 |
+
|
127 |
+
## Usage
|
128 |
+
|
129 |
+
### Direct Usage (Sentence Transformers)
|
130 |
+
|
131 |
+
First install the Sentence Transformers library:
|
132 |
+
|
133 |
+
```bash
|
134 |
+
pip install -U sentence-transformers
|
135 |
+
```
|
136 |
+
|
137 |
+
Then you can load this model and run inference.
|
138 |
+
```python
|
139 |
+
from sentence_transformers import SentenceTransformer
|
140 |
+
|
141 |
+
# Download from the 🤗 Hub
|
142 |
+
model = SentenceTransformer("CocoRoF/ModernBERT-SimCSE-multitask_v03-distill")
|
143 |
+
# Run inference
|
144 |
+
sentences = [
|
145 |
+
'버스가 바쁜 길을 따라 운전한다.',
|
146 |
+
'녹색 버스가 도로를 따라 내려간다.',
|
147 |
+
'그 여자는 데이트하러 가는 중이다.',
|
148 |
+
]
|
149 |
+
embeddings = model.encode(sentences)
|
150 |
+
print(embeddings.shape)
|
151 |
+
# [3, 1024]
|
152 |
+
|
153 |
+
# Get the similarity scores for the embeddings
|
154 |
+
similarities = model.similarity(embeddings, embeddings)
|
155 |
+
print(similarities.shape)
|
156 |
+
# [3, 3]
|
157 |
+
```
|
158 |
+
|
159 |
+
<!--
|
160 |
+
### Direct Usage (Transformers)
|
161 |
+
|
162 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
163 |
+
|
164 |
+
</details>
|
165 |
+
-->
|
166 |
+
|
167 |
+
<!--
|
168 |
+
### Downstream Usage (Sentence Transformers)
|
169 |
+
|
170 |
+
You can finetune this model on your own dataset.
|
171 |
+
|
172 |
+
<details><summary>Click to expand</summary>
|
173 |
+
|
174 |
+
</details>
|
175 |
+
-->
|
176 |
+
|
177 |
+
<!--
|
178 |
+
### Out-of-Scope Use
|
179 |
+
|
180 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
181 |
+
-->
|
182 |
+
|
183 |
+
## Evaluation
|
184 |
+
|
185 |
+
### Metrics
|
186 |
+
|
187 |
+
#### Semantic Similarity
|
188 |
+
|
189 |
+
* Dataset: `sts_dev`
|
190 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
191 |
+
|
192 |
+
| Metric | Value |
|
193 |
+
|:-------------------|:-----------|
|
194 |
+
| pearson_cosine | 0.8221 |
|
195 |
+
| spearman_cosine | 0.8282 |
|
196 |
+
| pearson_euclidean | 0.7929 |
|
197 |
+
| spearman_euclidean | 0.798 |
|
198 |
+
| pearson_manhattan | 0.7937 |
|
199 |
+
| spearman_manhattan | 0.7997 |
|
200 |
+
| pearson_dot | 0.7011 |
|
201 |
+
| spearman_dot | 0.6845 |
|
202 |
+
| pearson_max | 0.8221 |
|
203 |
+
| **spearman_max** | **0.8282** |
|
204 |
+
|
205 |
+
<!--
|
206 |
+
## Bias, Risks and Limitations
|
207 |
+
|
208 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
209 |
+
-->
|
210 |
+
|
211 |
+
<!--
|
212 |
+
### Recommendations
|
213 |
+
|
214 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
215 |
+
-->
|
216 |
+
|
217 |
+
## Training Details
|
218 |
+
|
219 |
+
### Training Dataset
|
220 |
+
|
221 |
+
#### misc_sts_pairs_v2_kor_kosimcse
|
222 |
+
|
223 |
+
* Dataset: [misc_sts_pairs_v2_kor_kosimcse](https://huggingface.co/datasets/x2bee/misc_sts_pairs_v2_kor_kosimcse) at [e747415](https://huggingface.co/datasets/x2bee/misc_sts_pairs_v2_kor_kosimcse/tree/e747415cfe9ff51d1c1550b8a07e5014c01dea59)
|
224 |
+
* Size: 449,904 training samples
|
225 |
+
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
|
226 |
+
* Approximate statistics based on the first 1000 samples:
|
227 |
+
| | sentence1 | sentence2 | score |
|
228 |
+
|:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------|
|
229 |
+
| type | string | string | float |
|
230 |
+
| details | <ul><li>min: 6 tokens</li><li>mean: 18.3 tokens</li><li>max: 69 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 18.69 tokens</li><li>max: 66 tokens</li></ul> | <ul><li>min: 0.11</li><li>mean: 0.77</li><li>max: 1.0</li></ul> |
|
231 |
+
* Samples:
|
232 |
+
| sentence1 | sentence2 | score |
|
233 |
+
|:-------------------------------------------------|:-------------------------------------------|:--------------------------------|
|
234 |
+
| <code>주홍글씨는 언제 출판되었습니까?</code> | <code>《주홍글씨》는 몇 년에 출판되었습니까?</code> | <code>0.8638778924942017</code> |
|
235 |
+
| <code>폴란드에서 빨간색과 흰색은 무엇을 의미합니까?</code> | <code>폴란드 국기의 색상은 무엇입니까?</code> | <code>0.6773715019226074</code> |
|
236 |
+
| <code>노르만인들은 방어를 위해 모트와 베일리 성을 어떻게 사용했는가?</code> | <code>11세기에는 어떻게 모트와 베일리 성을 만들었습니까?</code> | <code>0.7460665702819824</code> |
|
237 |
+
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
|
238 |
+
```json
|
239 |
+
{
|
240 |
+
"loss_fct": "torch.nn.modules.loss.MSELoss"
|
241 |
+
}
|
242 |
+
```
|
243 |
+
|
244 |
+
### Evaluation Dataset
|
245 |
+
|
246 |
+
#### Unnamed Dataset
|
247 |
+
|
248 |
+
* Size: 1,500 evaluation samples
|
249 |
+
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
|
250 |
+
* Approximate statistics based on the first 1000 samples:
|
251 |
+
| | sentence1 | sentence2 | score |
|
252 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
|
253 |
+
| type | string | string | float |
|
254 |
+
| details | <ul><li>min: 7 tokens</li><li>mean: 20.38 tokens</li><li>max: 52 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 20.52 tokens</li><li>max: 54 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.42</li><li>max: 1.0</li></ul> |
|
255 |
+
* Samples:
|
256 |
+
| sentence1 | sentence2 | score |
|
257 |
+
|:-------------------------------------|:------------------------------------|:------------------|
|
258 |
+
| <code>안전모를 가진 한 남자가 춤을 추고 있다.</code> | <code>안전모를 쓴 한 남자가 춤을 추고 있다.</code> | <code>1.0</code> |
|
259 |
+
| <code>어린아이가 말을 타고 있다.</code> | <code>아이가 말을 타고 있다.</code> | <code>0.95</code> |
|
260 |
+
| <code>한 남자가 뱀에게 쥐를 먹이고 있다.</code> | <code>남자가 뱀에게 쥐를 먹이고 있다.</code> | <code>1.0</code> |
|
261 |
+
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
|
262 |
+
```json
|
263 |
+
{
|
264 |
+
"loss_fct": "torch.nn.modules.loss.MSELoss"
|
265 |
+
}
|
266 |
+
```
|
267 |
+
|
268 |
+
### Training Hyperparameters
|
269 |
+
#### Non-Default Hyperparameters
|
270 |
+
|
271 |
+
- `overwrite_output_dir`: True
|
272 |
+
- `eval_strategy`: steps
|
273 |
+
- `gradient_accumulation_steps`: 16
|
274 |
+
- `learning_rate`: 8e-05
|
275 |
+
- `num_train_epochs`: 10.0
|
276 |
+
- `warmup_ratio`: 0.2
|
277 |
+
- `push_to_hub`: True
|
278 |
+
- `hub_model_id`: CocoRoF/ModernBERT-SimCSE-multitask_v03-distill
|
279 |
+
- `hub_strategy`: checkpoint
|
280 |
+
- `batch_sampler`: no_duplicates
|
281 |
+
|
282 |
+
#### All Hyperparameters
|
283 |
+
<details><summary>Click to expand</summary>
|
284 |
+
|
285 |
+
- `overwrite_output_dir`: True
|
286 |
+
- `do_predict`: False
|
287 |
+
- `eval_strategy`: steps
|
288 |
+
- `prediction_loss_only`: True
|
289 |
+
- `per_device_train_batch_size`: 8
|
290 |
+
- `per_device_eval_batch_size`: 8
|
291 |
+
- `per_gpu_train_batch_size`: None
|
292 |
+
- `per_gpu_eval_batch_size`: None
|
293 |
+
- `gradient_accumulation_steps`: 16
|
294 |
+
- `eval_accumulation_steps`: None
|
295 |
+
- `torch_empty_cache_steps`: None
|
296 |
+
- `learning_rate`: 8e-05
|
297 |
+
- `weight_decay`: 0.0
|
298 |
+
- `adam_beta1`: 0.9
|
299 |
+
- `adam_beta2`: 0.999
|
300 |
+
- `adam_epsilon`: 1e-08
|
301 |
+
- `max_grad_norm`: 1.0
|
302 |
+
- `num_train_epochs`: 10.0
|
303 |
+
- `max_steps`: -1
|
304 |
+
- `lr_scheduler_type`: linear
|
305 |
+
- `lr_scheduler_kwargs`: {}
|
306 |
+
- `warmup_ratio`: 0.2
|
307 |
+
- `warmup_steps`: 0
|
308 |
+
- `log_level`: passive
|
309 |
+
- `log_level_replica`: warning
|
310 |
+
- `log_on_each_node`: True
|
311 |
+
- `logging_nan_inf_filter`: True
|
312 |
+
- `save_safetensors`: True
|
313 |
+
- `save_on_each_node`: False
|
314 |
+
- `save_only_model`: False
|
315 |
+
- `restore_callback_states_from_checkpoint`: False
|
316 |
+
- `no_cuda`: False
|
317 |
+
- `use_cpu`: False
|
318 |
+
- `use_mps_device`: False
|
319 |
+
- `seed`: 42
|
320 |
+
- `data_seed`: None
|
321 |
+
- `jit_mode_eval`: False
|
322 |
+
- `use_ipex`: False
|
323 |
+
- `bf16`: False
|
324 |
+
- `fp16`: False
|
325 |
+
- `fp16_opt_level`: O1
|
326 |
+
- `half_precision_backend`: auto
|
327 |
+
- `bf16_full_eval`: False
|
328 |
+
- `fp16_full_eval`: False
|
329 |
+
- `tf32`: None
|
330 |
+
- `local_rank`: 0
|
331 |
+
- `ddp_backend`: None
|
332 |
+
- `tpu_num_cores`: None
|
333 |
+
- `tpu_metrics_debug`: False
|
334 |
+
- `debug`: []
|
335 |
+
- `dataloader_drop_last`: True
|
336 |
+
- `dataloader_num_workers`: 0
|
337 |
+
- `dataloader_prefetch_factor`: None
|
338 |
+
- `past_index`: -1
|
339 |
+
- `disable_tqdm`: False
|
340 |
+
- `remove_unused_columns`: True
|
341 |
+
- `label_names`: None
|
342 |
+
- `load_best_model_at_end`: False
|
343 |
+
- `ignore_data_skip`: False
|
344 |
+
- `fsdp`: []
|
345 |
+
- `fsdp_min_num_params`: 0
|
346 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
347 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
348 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
349 |
+
- `deepspeed`: None
|
350 |
+
- `label_smoothing_factor`: 0.0
|
351 |
+
- `optim`: adamw_torch
|
352 |
+
- `optim_args`: None
|
353 |
+
- `adafactor`: False
|
354 |
+
- `group_by_length`: False
|
355 |
+
- `length_column_name`: length
|
356 |
+
- `ddp_find_unused_parameters`: None
|
357 |
+
- `ddp_bucket_cap_mb`: None
|
358 |
+
- `ddp_broadcast_buffers`: False
|
359 |
+
- `dataloader_pin_memory`: True
|
360 |
+
- `dataloader_persistent_workers`: False
|
361 |
+
- `skip_memory_metrics`: True
|
362 |
+
- `use_legacy_prediction_loop`: False
|
363 |
+
- `push_to_hub`: True
|
364 |
+
- `resume_from_checkpoint`: None
|
365 |
+
- `hub_model_id`: CocoRoF/ModernBERT-SimCSE-multitask_v03-distill
|
366 |
+
- `hub_strategy`: checkpoint
|
367 |
+
- `hub_private_repo`: None
|
368 |
+
- `hub_always_push`: False
|
369 |
+
- `gradient_checkpointing`: False
|
370 |
+
- `gradient_checkpointing_kwargs`: None
|
371 |
+
- `include_inputs_for_metrics`: False
|
372 |
+
- `include_for_metrics`: []
|
373 |
+
- `eval_do_concat_batches`: True
|
374 |
+
- `fp16_backend`: auto
|
375 |
+
- `push_to_hub_model_id`: None
|
376 |
+
- `push_to_hub_organization`: None
|
377 |
+
- `mp_parameters`:
|
378 |
+
- `auto_find_batch_size`: False
|
379 |
+
- `full_determinism`: False
|
380 |
+
- `torchdynamo`: None
|
381 |
+
- `ray_scope`: last
|
382 |
+
- `ddp_timeout`: 1800
|
383 |
+
- `torch_compile`: False
|
384 |
+
- `torch_compile_backend`: None
|
385 |
+
- `torch_compile_mode`: None
|
386 |
+
- `dispatch_batches`: None
|
387 |
+
- `split_batches`: None
|
388 |
+
- `include_tokens_per_second`: False
|
389 |
+
- `include_num_input_tokens_seen`: False
|
390 |
+
- `neftune_noise_alpha`: None
|
391 |
+
- `optim_target_modules`: None
|
392 |
+
- `batch_eval_metrics`: False
|
393 |
+
- `eval_on_start`: False
|
394 |
+
- `use_liger_kernel`: False
|
395 |
+
- `eval_use_gather_object`: False
|
396 |
+
- `average_tokens_across_devices`: False
|
397 |
+
- `prompts`: None
|
398 |
+
- `batch_sampler`: no_duplicates
|
399 |
+
- `multi_dataset_batch_sampler`: proportional
|
400 |
+
|
401 |
+
</details>
|
402 |
+
|
403 |
+
### Training Logs
|
404 |
+
<details><summary>Click to expand</summary>
|
405 |
+
|
406 |
+
| Epoch | Step | Training Loss | Validation Loss | sts_dev_spearman_max |
|
407 |
+
|:------:|:----:|:-------------:|:---------------:|:--------------------:|
|
408 |
+
| 0.0228 | 10 | 0.3524 | - | - |
|
409 |
+
| 0.0455 | 20 | 0.3496 | - | - |
|
410 |
+
| 0.0683 | 30 | 0.3515 | - | - |
|
411 |
+
| 0.0911 | 40 | 0.348 | - | - |
|
412 |
+
| 0.1138 | 50 | 0.3409 | - | - |
|
413 |
+
| 0.1366 | 60 | 0.347 | - | - |
|
414 |
+
| 0.1593 | 70 | 0.3377 | - | - |
|
415 |
+
| 0.1821 | 80 | 0.3317 | - | - |
|
416 |
+
| 0.2049 | 90 | 0.3279 | - | - |
|
417 |
+
| 0.2276 | 100 | 0.3264 | - | - |
|
418 |
+
| 0.2504 | 110 | 0.3116 | - | - |
|
419 |
+
| 0.2732 | 120 | 0.3055 | - | - |
|
420 |
+
| 0.2959 | 130 | 0.3042 | - | - |
|
421 |
+
| 0.3187 | 140 | 0.2928 | - | - |
|
422 |
+
| 0.3414 | 150 | 0.2835 | - | - |
|
423 |
+
| 0.3642 | 160 | 0.2665 | - | - |
|
424 |
+
| 0.3870 | 170 | 0.2665 | - | - |
|
425 |
+
| 0.4097 | 180 | 0.2486 | - | - |
|
426 |
+
| 0.4325 | 190 | 0.2387 | - | - |
|
427 |
+
| 0.4553 | 200 | 0.2283 | - | - |
|
428 |
+
| 0.4780 | 210 | 0.2237 | - | - |
|
429 |
+
| 0.5008 | 220 | 0.2204 | - | - |
|
430 |
+
| 0.5235 | 230 | 0.205 | - | - |
|
431 |
+
| 0.5463 | 240 | 0.2002 | - | - |
|
432 |
+
| 0.5691 | 250 | 0.1904 | 0.0330 | 0.7921 |
|
433 |
+
| 0.5918 | 260 | 0.1834 | - | - |
|
434 |
+
| 0.6146 | 270 | 0.1776 | - | - |
|
435 |
+
| 0.6374 | 280 | 0.1665 | - | - |
|
436 |
+
| 0.6601 | 290 | 0.1625 | - | - |
|
437 |
+
| 0.6829 | 300 | 0.1585 | - | - |
|
438 |
+
| 0.7056 | 310 | 0.1522 | - | - |
|
439 |
+
| 0.7284 | 320 | 0.1552 | - | - |
|
440 |
+
| 0.7512 | 330 | 0.1448 | - | - |
|
441 |
+
| 0.7739 | 340 | 0.1428 | - | - |
|
442 |
+
| 0.7967 | 350 | 0.1401 | - | - |
|
443 |
+
| 0.8195 | 360 | 0.1399 | - | - |
|
444 |
+
| 0.8422 | 370 | 0.1389 | - | - |
|
445 |
+
| 0.8650 | 380 | 0.1372 | - | - |
|
446 |
+
| 0.8878 | 390 | 0.1338 | - | - |
|
447 |
+
| 0.9105 | 400 | 0.1361 | - | - |
|
448 |
+
| 0.9333 | 410 | 0.1389 | - | - |
|
449 |
+
| 0.9560 | 420 | 0.1328 | - | - |
|
450 |
+
| 0.9788 | 430 | 0.1375 | - | - |
|
451 |
+
| 1.0 | 440 | 0.1266 | - | - |
|
452 |
+
| 1.0228 | 450 | 0.1269 | - | - |
|
453 |
+
| 1.0455 | 460 | 0.1262 | - | - |
|
454 |
+
| 1.0683 | 470 | 0.127 | - | - |
|
455 |
+
| 1.0911 | 480 | 0.1306 | - | - |
|
456 |
+
| 1.1138 | 490 | 0.1266 | - | - |
|
457 |
+
| 1.1366 | 500 | 0.1247 | 0.0405 | 0.7995 |
|
458 |
+
| 1.1593 | 510 | 0.1258 | - | - |
|
459 |
+
| 1.1821 | 520 | 0.1277 | - | - |
|
460 |
+
| 1.2049 | 530 | 0.13 | - | - |
|
461 |
+
| 1.2276 | 540 | 0.1291 | - | - |
|
462 |
+
| 1.2504 | 550 | 0.1287 | - | - |
|
463 |
+
| 1.2732 | 560 | 0.1233 | - | - |
|
464 |
+
| 1.2959 | 570 | 0.1242 | - | - |
|
465 |
+
| 1.3187 | 580 | 0.1242 | - | - |
|
466 |
+
| 1.3414 | 590 | 0.1227 | - | - |
|
467 |
+
| 1.3642 | 600 | 0.1201 | - | - |
|
468 |
+
| 1.3870 | 610 | 0.1247 | - | - |
|
469 |
+
| 1.4097 | 620 | 0.1249 | - | - |
|
470 |
+
| 1.4325 | 630 | 0.1213 | - | - |
|
471 |
+
| 1.4553 | 640 | 0.1217 | - | - |
|
472 |
+
| 1.4780 | 650 | 0.1204 | - | - |
|
473 |
+
| 1.5008 | 660 | 0.1191 | - | - |
|
474 |
+
| 1.5235 | 670 | 0.1163 | - | - |
|
475 |
+
| 1.5463 | 680 | 0.1171 | - | - |
|
476 |
+
| 1.5691 | 690 | 0.1208 | - | - |
|
477 |
+
| 1.5918 | 700 | 0.1194 | - | - |
|
478 |
+
| 1.6146 | 710 | 0.1173 | - | - |
|
479 |
+
| 1.6374 | 720 | 0.1177 | - | - |
|
480 |
+
| 1.6601 | 730 | 0.1148 | - | - |
|
481 |
+
| 1.6829 | 740 | 0.1134 | - | - |
|
482 |
+
| 1.7056 | 750 | 0.1167 | 0.0422 | 0.8092 |
|
483 |
+
| 1.7284 | 760 | 0.1145 | - | - |
|
484 |
+
| 1.7512 | 770 | 0.114 | - | - |
|
485 |
+
| 1.7739 | 780 | 0.1136 | - | - |
|
486 |
+
| 1.7967 | 790 | 0.1123 | - | - |
|
487 |
+
| 1.8195 | 800 | 0.1115 | - | - |
|
488 |
+
| 1.8422 | 810 | 0.1127 | - | - |
|
489 |
+
| 1.8650 | 820 | 0.1137 | - | - |
|
490 |
+
| 1.8878 | 830 | 0.1137 | - | - |
|
491 |
+
| 1.9105 | 840 | 0.1123 | - | - |
|
492 |
+
| 1.9333 | 850 | 0.1115 | - | - |
|
493 |
+
| 1.9560 | 860 | 0.1105 | - | - |
|
494 |
+
| 1.9788 | 870 | 0.1133 | - | - |
|
495 |
+
| 2.0 | 880 | 0.1049 | - | - |
|
496 |
+
| 2.0228 | 890 | 0.1091 | - | - |
|
497 |
+
| 2.0455 | 900 | 0.111 | - | - |
|
498 |
+
| 2.0683 | 910 | 0.1101 | - | - |
|
499 |
+
| 2.0911 | 920 | 0.1078 | - | - |
|
500 |
+
| 2.1138 | 930 | 0.1097 | - | - |
|
501 |
+
| 2.1366 | 940 | 0.108 | - | - |
|
502 |
+
| 2.1593 | 950 | 0.1077 | - | - |
|
503 |
+
| 2.1821 | 960 | 0.1087 | - | - |
|
504 |
+
| 2.2049 | 970 | 0.1058 | - | - |
|
505 |
+
| 2.2276 | 980 | 0.1071 | - | - |
|
506 |
+
| 2.2504 | 990 | 0.1058 | - | - |
|
507 |
+
| 2.2732 | 1000 | 0.1104 | 0.0434 | 0.8156 |
|
508 |
+
| 2.2959 | 1010 | 0.1036 | - | - |
|
509 |
+
| 2.3187 | 1020 | 0.1068 | - | - |
|
510 |
+
| 2.3414 | 1030 | 0.1033 | - | - |
|
511 |
+
| 2.3642 | 1040 | 0.1058 | - | - |
|
512 |
+
| 2.3870 | 1050 | 0.105 | - | - |
|
513 |
+
| 2.4097 | 1060 | 0.1052 | - | - |
|
514 |
+
| 2.4325 | 1070 | 0.1013 | - | - |
|
515 |
+
| 2.4553 | 1080 | 0.1037 | - | - |
|
516 |
+
| 2.4780 | 1090 | 0.1031 | - | - |
|
517 |
+
| 2.5008 | 1100 | 0.1057 | - | - |
|
518 |
+
| 2.5235 | 1110 | 0.1051 | - | - |
|
519 |
+
| 2.5463 | 1120 | 0.1019 | - | - |
|
520 |
+
| 2.5691 | 1130 | 0.1018 | - | - |
|
521 |
+
| 2.5918 | 1140 | 0.1007 | - | - |
|
522 |
+
| 2.6146 | 1150 | 0.1035 | - | - |
|
523 |
+
| 2.6374 | 1160 | 0.1032 | - | - |
|
524 |
+
| 2.6601 | 1170 | 0.1036 | - | - |
|
525 |
+
| 2.6829 | 1180 | 0.0971 | - | - |
|
526 |
+
| 2.7056 | 1190 | 0.1015 | - | - |
|
527 |
+
| 2.7284 | 1200 | 0.104 | - | - |
|
528 |
+
| 2.7512 | 1210 | 0.1007 | - | - |
|
529 |
+
| 2.7739 | 1220 | 0.102 | - | - |
|
530 |
+
| 2.7967 | 1230 | 0.0994 | - | - |
|
531 |
+
| 2.8195 | 1240 | 0.0972 | - | - |
|
532 |
+
| 2.8422 | 1250 | 0.0969 | 0.0437 | 0.8185 |
|
533 |
+
| 2.8650 | 1260 | 0.0968 | - | - |
|
534 |
+
| 2.8878 | 1270 | 0.1003 | - | - |
|
535 |
+
| 2.9105 | 1280 | 0.1036 | - | - |
|
536 |
+
| 2.9333 | 1290 | 0.0969 | - | - |
|
537 |
+
| 2.9560 | 1300 | 0.0965 | - | - |
|
538 |
+
| 2.9788 | 1310 | 0.0974 | - | - |
|
539 |
+
| 3.0 | 1320 | 0.0905 | - | - |
|
540 |
+
| 3.0228 | 1330 | 0.1006 | - | - |
|
541 |
+
| 3.0455 | 1340 | 0.0952 | - | - |
|
542 |
+
| 3.0683 | 1350 | 0.0971 | - | - |
|
543 |
+
| 3.0911 | 1360 | 0.0943 | - | - |
|
544 |
+
| 3.1138 | 1370 | 0.0996 | - | - |
|
545 |
+
| 3.1366 | 1380 | 0.0971 | - | - |
|
546 |
+
| 3.1593 | 1390 | 0.097 | - | - |
|
547 |
+
| 3.1821 | 1400 | 0.0937 | - | - |
|
548 |
+
| 3.2049 | 1410 | 0.0955 | - | - |
|
549 |
+
| 3.2276 | 1420 | 0.0963 | - | - |
|
550 |
+
| 3.2504 | 1430 | 0.0938 | - | - |
|
551 |
+
| 3.2732 | 1440 | 0.0986 | - | - |
|
552 |
+
| 3.2959 | 1450 | 0.0949 | - | - |
|
553 |
+
| 3.3187 | 1460 | 0.0932 | - | - |
|
554 |
+
| 3.3414 | 1470 | 0.096 | - | - |
|
555 |
+
| 3.3642 | 1480 | 0.0919 | - | - |
|
556 |
+
| 3.3870 | 1490 | 0.093 | - | - |
|
557 |
+
| 3.4097 | 1500 | 0.0925 | 0.0438 | 0.8201 |
|
558 |
+
| 3.4325 | 1510 | 0.0935 | - | - |
|
559 |
+
| 3.4553 | 1520 | 0.0928 | - | - |
|
560 |
+
| 3.4780 | 1530 | 0.0914 | - | - |
|
561 |
+
| 3.5008 | 1540 | 0.0912 | - | - |
|
562 |
+
| 3.5235 | 1550 | 0.091 | - | - |
|
563 |
+
| 3.5463 | 1560 | 0.0906 | - | - |
|
564 |
+
| 3.5691 | 1570 | 0.0936 | - | - |
|
565 |
+
| 3.5918 | 1580 | 0.0943 | - | - |
|
566 |
+
| 3.6146 | 1590 | 0.0925 | - | - |
|
567 |
+
| 3.6374 | 1600 | 0.0908 | - | - |
|
568 |
+
| 3.6601 | 1610 | 0.0933 | - | - |
|
569 |
+
| 3.6829 | 1620 | 0.0917 | - | - |
|
570 |
+
| 3.7056 | 1630 | 0.0887 | - | - |
|
571 |
+
| 3.7284 | 1640 | 0.0903 | - | - |
|
572 |
+
| 3.7512 | 1650 | 0.0934 | - | - |
|
573 |
+
| 3.7739 | 1660 | 0.0906 | - | - |
|
574 |
+
| 3.7967 | 1670 | 0.0886 | - | - |
|
575 |
+
| 3.8195 | 1680 | 0.0915 | - | - |
|
576 |
+
| 3.8422 | 1690 | 0.0924 | - | - |
|
577 |
+
| 3.8650 | 1700 | 0.094 | - | - |
|
578 |
+
| 3.8878 | 1710 | 0.0899 | - | - |
|
579 |
+
| 3.9105 | 1720 | 0.0881 | - | - |
|
580 |
+
| 3.9333 | 1730 | 0.0884 | - | - |
|
581 |
+
| 3.9560 | 1740 | 0.0894 | - | - |
|
582 |
+
| 3.9788 | 1750 | 0.0892 | 0.0441 | 0.8215 |
|
583 |
+
| 4.0 | 1760 | 0.0812 | - | - |
|
584 |
+
| 4.0228 | 1770 | 0.0878 | - | - |
|
585 |
+
| 4.0455 | 1780 | 0.0869 | - | - |
|
586 |
+
| 4.0683 | 1790 | 0.09 | - | - |
|
587 |
+
| 4.0911 | 1800 | 0.0875 | - | - |
|
588 |
+
| 4.1138 | 1810 | 0.086 | - | - |
|
589 |
+
| 4.1366 | 1820 | 0.0888 | - | - |
|
590 |
+
| 4.1593 | 1830 | 0.086 | - | - |
|
591 |
+
| 4.1821 | 1840 | 0.0869 | - | - |
|
592 |
+
| 4.2049 | 1850 | 0.0885 | - | - |
|
593 |
+
| 4.2276 | 1860 | 0.0891 | - | - |
|
594 |
+
| 4.2504 | 1870 | 0.0853 | - | - |
|
595 |
+
| 4.2732 | 1880 | 0.0849 | - | - |
|
596 |
+
| 4.2959 | 1890 | 0.0856 | - | - |
|
597 |
+
| 4.3187 | 1900 | 0.0863 | - | - |
|
598 |
+
| 4.3414 | 1910 | 0.0849 | - | - |
|
599 |
+
| 4.3642 | 1920 | 0.0855 | - | - |
|
600 |
+
| 4.3870 | 1930 | 0.0841 | - | - |
|
601 |
+
| 4.4097 | 1940 | 0.0893 | - | - |
|
602 |
+
| 4.4325 | 1950 | 0.0847 | - | - |
|
603 |
+
| 4.4553 | 1960 | 0.0866 | - | - |
|
604 |
+
| 4.4780 | 1970 | 0.0866 | - | - |
|
605 |
+
| 4.5008 | 1980 | 0.0844 | - | - |
|
606 |
+
| 4.5235 | 1990 | 0.0846 | - | - |
|
607 |
+
| 4.5463 | 2000 | 0.0847 | 0.0435 | 0.8220 |
|
608 |
+
| 4.5691 | 2010 | 0.0831 | - | - |
|
609 |
+
| 4.5918 | 2020 | 0.0843 | - | - |
|
610 |
+
| 4.6146 | 2030 | 0.086 | - | - |
|
611 |
+
| 4.6374 | 2040 | 0.0851 | - | - |
|
612 |
+
| 4.6601 | 2050 | 0.0844 | - | - |
|
613 |
+
| 4.6829 | 2060 | 0.0843 | - | - |
|
614 |
+
| 4.7056 | 2070 | 0.0854 | - | - |
|
615 |
+
| 4.7284 | 2080 | 0.0851 | - | - |
|
616 |
+
| 4.7512 | 2090 | 0.0822 | - | - |
|
617 |
+
| 4.7739 | 2100 | 0.0859 | - | - |
|
618 |
+
| 4.7967 | 2110 | 0.0844 | - | - |
|
619 |
+
| 4.8195 | 2120 | 0.0853 | - | - |
|
620 |
+
| 4.8422 | 2130 | 0.0815 | - | - |
|
621 |
+
| 4.8650 | 2140 | 0.0833 | - | - |
|
622 |
+
| 4.8878 | 2150 | 0.0817 | - | - |
|
623 |
+
| 4.9105 | 2160 | 0.0873 | - | - |
|
624 |
+
| 4.9333 | 2170 | 0.0813 | - | - |
|
625 |
+
| 4.9560 | 2180 | 0.0829 | - | - |
|
626 |
+
| 4.9788 | 2190 | 0.0812 | - | - |
|
627 |
+
| 5.0 | 2200 | 0.0776 | - | - |
|
628 |
+
| 5.0228 | 2210 | 0.083 | - | - |
|
629 |
+
| 5.0455 | 2220 | 0.0821 | - | - |
|
630 |
+
| 5.0683 | 2230 | 0.0806 | - | - |
|
631 |
+
| 5.0911 | 2240 | 0.0809 | - | - |
|
632 |
+
| 5.1138 | 2250 | 0.0814 | 0.0431 | 0.8225 |
|
633 |
+
| 5.1366 | 2260 | 0.0808 | - | - |
|
634 |
+
| 5.1593 | 2270 | 0.0791 | - | - |
|
635 |
+
| 5.1821 | 2280 | 0.0811 | - | - |
|
636 |
+
| 5.2049 | 2290 | 0.0805 | - | - |
|
637 |
+
| 5.2276 | 2300 | 0.0817 | - | - |
|
638 |
+
| 5.2504 | 2310 | 0.0772 | - | - |
|
639 |
+
| 5.2732 | 2320 | 0.0799 | - | - |
|
640 |
+
| 5.2959 | 2330 | 0.0829 | - | - |
|
641 |
+
| 5.3187 | 2340 | 0.077 | - | - |
|
642 |
+
| 5.3414 | 2350 | 0.0801 | - | - |
|
643 |
+
| 5.3642 | 2360 | 0.0812 | - | - |
|
644 |
+
| 5.3870 | 2370 | 0.0788 | - | - |
|
645 |
+
| 5.4097 | 2380 | 0.0776 | - | - |
|
646 |
+
| 5.4325 | 2390 | 0.0785 | - | - |
|
647 |
+
| 5.4553 | 2400 | 0.0771 | - | - |
|
648 |
+
| 5.4780 | 2410 | 0.0788 | - | - |
|
649 |
+
| 5.5008 | 2420 | 0.0796 | - | - |
|
650 |
+
| 5.5235 | 2430 | 0.0793 | - | - |
|
651 |
+
| 5.5463 | 2440 | 0.0813 | - | - |
|
652 |
+
| 5.5691 | 2450 | 0.0757 | - | - |
|
653 |
+
| 5.5918 | 2460 | 0.079 | - | - |
|
654 |
+
| 5.6146 | 2470 | 0.0797 | - | - |
|
655 |
+
| 5.6374 | 2480 | 0.0794 | - | - |
|
656 |
+
| 5.6601 | 2490 | 0.0808 | - | - |
|
657 |
+
| 5.6829 | 2500 | 0.0796 | 0.0424 | 0.8230 |
|
658 |
+
| 5.7056 | 2510 | 0.0802 | - | - |
|
659 |
+
| 5.7284 | 2520 | 0.0799 | - | - |
|
660 |
+
| 5.7512 | 2530 | 0.0802 | - | - |
|
661 |
+
| 5.7739 | 2540 | 0.0813 | - | - |
|
662 |
+
| 5.7967 | 2550 | 0.0772 | - | - |
|
663 |
+
| 5.8195 | 2560 | 0.0766 | - | - |
|
664 |
+
| 5.8422 | 2570 | 0.0778 | - | - |
|
665 |
+
| 5.8650 | 2580 | 0.076 | - | - |
|
666 |
+
| 5.8878 | 2590 | 0.0787 | - | - |
|
667 |
+
| 5.9105 | 2600 | 0.0794 | - | - |
|
668 |
+
| 5.9333 | 2610 | 0.076 | - | - |
|
669 |
+
| 5.9560 | 2620 | 0.0773 | - | - |
|
670 |
+
| 5.9788 | 2630 | 0.0755 | - | - |
|
671 |
+
| 6.0 | 2640 | 0.0725 | - | - |
|
672 |
+
| 6.0228 | 2650 | 0.0738 | - | - |
|
673 |
+
| 6.0455 | 2660 | 0.0762 | - | - |
|
674 |
+
| 6.0683 | 2670 | 0.0761 | - | - |
|
675 |
+
| 6.0911 | 2680 | 0.0771 | - | - |
|
676 |
+
| 6.1138 | 2690 | 0.0765 | - | - |
|
677 |
+
| 6.1366 | 2700 | 0.0755 | - | - |
|
678 |
+
| 6.1593 | 2710 | 0.0771 | - | - |
|
679 |
+
| 6.1821 | 2720 | 0.0748 | - | - |
|
680 |
+
| 6.2049 | 2730 | 0.0768 | - | - |
|
681 |
+
| 6.2276 | 2740 | 0.0766 | - | - |
|
682 |
+
| 6.2504 | 2750 | 0.0766 | 0.0422 | 0.8239 |
|
683 |
+
| 6.2732 | 2760 | 0.076 | - | - |
|
684 |
+
| 6.2959 | 2770 | 0.0753 | - | - |
|
685 |
+
| 6.3187 | 2780 | 0.0735 | - | - |
|
686 |
+
| 6.3414 | 2790 | 0.0751 | - | - |
|
687 |
+
| 6.3642 | 2800 | 0.0738 | - | - |
|
688 |
+
| 6.3870 | 2810 | 0.0749 | - | - |
|
689 |
+
| 6.4097 | 2820 | 0.0753 | - | - |
|
690 |
+
| 6.4325 | 2830 | 0.077 | - | - |
|
691 |
+
| 6.4553 | 2840 | 0.0747 | - | - |
|
692 |
+
| 6.4780 | 2850 | 0.0722 | - | - |
|
693 |
+
| 6.5008 | 2860 | 0.0736 | - | - |
|
694 |
+
| 6.5235 | 2870 | 0.073 | - | - |
|
695 |
+
| 6.5463 | 2880 | 0.0774 | - | - |
|
696 |
+
| 6.5691 | 2890 | 0.075 | - | - |
|
697 |
+
| 6.5918 | 2900 | 0.0718 | - | - |
|
698 |
+
| 6.6146 | 2910 | 0.0727 | - | - |
|
699 |
+
| 6.6374 | 2920 | 0.0735 | - | - |
|
700 |
+
| 6.6601 | 2930 | 0.0726 | - | - |
|
701 |
+
| 6.6829 | 2940 | 0.075 | - | - |
|
702 |
+
| 6.7056 | 2950 | 0.0728 | - | - |
|
703 |
+
| 6.7284 | 2960 | 0.0713 | - | - |
|
704 |
+
| 6.7512 | 2970 | 0.0722 | - | - |
|
705 |
+
| 6.7739 | 2980 | 0.0753 | - | - |
|
706 |
+
| 6.7967 | 2990 | 0.0733 | - | - |
|
707 |
+
| 6.8195 | 3000 | 0.0727 | 0.0425 | 0.8243 |
|
708 |
+
| 6.8422 | 3010 | 0.0729 | - | - |
|
709 |
+
| 6.8650 | 3020 | 0.073 | - | - |
|
710 |
+
| 6.8878 | 3030 | 0.0739 | - | - |
|
711 |
+
| 6.9105 | 3040 | 0.0717 | - | - |
|
712 |
+
| 6.9333 | 3050 | 0.0719 | - | - |
|
713 |
+
| 6.9560 | 3060 | 0.0712 | - | - |
|
714 |
+
| 6.9788 | 3070 | 0.0712 | - | - |
|
715 |
+
| 7.0 | 3080 | 0.0674 | - | - |
|
716 |
+
| 7.0228 | 3090 | 0.0729 | - | - |
|
717 |
+
| 7.0455 | 3100 | 0.0712 | - | - |
|
718 |
+
| 7.0683 | 3110 | 0.0701 | - | - |
|
719 |
+
| 7.0911 | 3120 | 0.0699 | - | - |
|
720 |
+
| 7.1138 | 3130 | 0.0675 | - | - |
|
721 |
+
| 7.1366 | 3140 | 0.0699 | - | - |
|
722 |
+
| 7.1593 | 3150 | 0.0716 | - | - |
|
723 |
+
| 7.1821 | 3160 | 0.0707 | - | - |
|
724 |
+
| 7.2049 | 3170 | 0.0717 | - | - |
|
725 |
+
| 7.2276 | 3180 | 0.0709 | - | - |
|
726 |
+
| 7.2504 | 3190 | 0.071 | - | - |
|
727 |
+
| 7.2732 | 3200 | 0.0722 | - | - |
|
728 |
+
| 7.2959 | 3210 | 0.072 | - | - |
|
729 |
+
| 7.3187 | 3220 | 0.0729 | - | - |
|
730 |
+
| 7.3414 | 3230 | 0.0678 | - | - |
|
731 |
+
| 7.3642 | 3240 | 0.0705 | - | - |
|
732 |
+
| 7.3870 | 3250 | 0.0715 | 0.0426 | 0.8256 |
|
733 |
+
| 7.4097 | 3260 | 0.0703 | - | - |
|
734 |
+
| 7.4325 | 3270 | 0.0699 | - | - |
|
735 |
+
| 7.4553 | 3280 | 0.071 | - | - |
|
736 |
+
| 7.4780 | 3290 | 0.0692 | - | - |
|
737 |
+
| 7.5008 | 3300 | 0.0693 | - | - |
|
738 |
+
| 7.5235 | 3310 | 0.0661 | - | - |
|
739 |
+
| 7.5463 | 3320 | 0.0702 | - | - |
|
740 |
+
| 7.5691 | 3330 | 0.0697 | - | - |
|
741 |
+
| 7.5918 | 3340 | 0.072 | - | - |
|
742 |
+
| 7.6146 | 3350 | 0.0693 | - | - |
|
743 |
+
| 7.6374 | 3360 | 0.0691 | - | - |
|
744 |
+
| 7.6601 | 3370 | 0.0702 | - | - |
|
745 |
+
| 7.6829 | 3380 | 0.0672 | - | - |
|
746 |
+
| 7.7056 | 3390 | 0.0698 | - | - |
|
747 |
+
| 7.7284 | 3400 | 0.0687 | - | - |
|
748 |
+
| 7.7512 | 3410 | 0.0654 | - | - |
|
749 |
+
| 7.7739 | 3420 | 0.0687 | - | - |
|
750 |
+
| 7.7967 | 3430 | 0.0679 | - | - |
|
751 |
+
| 7.8195 | 3440 | 0.0713 | - | - |
|
752 |
+
| 7.8422 | 3450 | 0.0676 | - | - |
|
753 |
+
| 7.8650 | 3460 | 0.0708 | - | - |
|
754 |
+
| 7.8878 | 3470 | 0.0666 | - | - |
|
755 |
+
| 7.9105 | 3480 | 0.0675 | - | - |
|
756 |
+
| 7.9333 | 3490 | 0.0693 | - | - |
|
757 |
+
| 7.9560 | 3500 | 0.0688 | 0.0427 | 0.8260 |
|
758 |
+
| 7.9788 | 3510 | 0.068 | - | - |
|
759 |
+
| 8.0 | 3520 | 0.063 | - | - |
|
760 |
+
| 8.0228 | 3530 | 0.0659 | - | - |
|
761 |
+
| 8.0455 | 3540 | 0.0639 | - | - |
|
762 |
+
| 8.0683 | 3550 | 0.0678 | - | - |
|
763 |
+
| 8.0911 | 3560 | 0.0689 | - | - |
|
764 |
+
| 8.1138 | 3570 | 0.0687 | - | - |
|
765 |
+
| 8.1366 | 3580 | 0.0672 | - | - |
|
766 |
+
| 8.1593 | 3590 | 0.0659 | - | - |
|
767 |
+
| 8.1821 | 3600 | 0.0658 | - | - |
|
768 |
+
| 8.2049 | 3610 | 0.0664 | - | - |
|
769 |
+
| 8.2276 | 3620 | 0.0659 | - | - |
|
770 |
+
| 8.2504 | 3630 | 0.0664 | - | - |
|
771 |
+
| 8.2732 | 3640 | 0.0652 | - | - |
|
772 |
+
| 8.2959 | 3650 | 0.0683 | - | - |
|
773 |
+
| 8.3187 | 3660 | 0.0641 | - | - |
|
774 |
+
| 8.3414 | 3670 | 0.0672 | - | - |
|
775 |
+
| 8.3642 | 3680 | 0.0655 | - | - |
|
776 |
+
| 8.3870 | 3690 | 0.0661 | - | - |
|
777 |
+
| 8.4097 | 3700 | 0.0638 | - | - |
|
778 |
+
| 8.4325 | 3710 | 0.0675 | - | - |
|
779 |
+
| 8.4553 | 3720 | 0.0648 | - | - |
|
780 |
+
| 8.4780 | 3730 | 0.067 | - | - |
|
781 |
+
| 8.5008 | 3740 | 0.0684 | - | - |
|
782 |
+
| 8.5235 | 3750 | 0.0667 | 0.0420 | 0.8268 |
|
783 |
+
| 8.5463 | 3760 | 0.0645 | - | - |
|
784 |
+
| 8.5691 | 3770 | 0.0652 | - | - |
|
785 |
+
| 8.5918 | 3780 | 0.0633 | - | - |
|
786 |
+
| 8.6146 | 3790 | 0.065 | - | - |
|
787 |
+
| 8.6374 | 3800 | 0.064 | - | - |
|
788 |
+
| 8.6601 | 3810 | 0.0677 | - | - |
|
789 |
+
| 8.6829 | 3820 | 0.0661 | - | - |
|
790 |
+
| 8.7056 | 3830 | 0.0653 | - | - |
|
791 |
+
| 8.7284 | 3840 | 0.0625 | - | - |
|
792 |
+
| 8.7512 | 3850 | 0.0651 | - | - |
|
793 |
+
| 8.7739 | 3860 | 0.0656 | - | - |
|
794 |
+
| 8.7967 | 3870 | 0.0636 | - | - |
|
795 |
+
| 8.8195 | 3880 | 0.0655 | - | - |
|
796 |
+
| 8.8422 | 3890 | 0.0647 | - | - |
|
797 |
+
| 8.8650 | 3900 | 0.0638 | - | - |
|
798 |
+
| 8.8878 | 3910 | 0.0636 | - | - |
|
799 |
+
| 8.9105 | 3920 | 0.0666 | - | - |
|
800 |
+
| 8.9333 | 3930 | 0.062 | - | - |
|
801 |
+
| 8.9560 | 3940 | 0.065 | - | - |
|
802 |
+
| 8.9788 | 3950 | 0.0643 | - | - |
|
803 |
+
| 9.0 | 3960 | 0.0594 | - | - |
|
804 |
+
| 9.0228 | 3970 | 0.0616 | - | - |
|
805 |
+
| 9.0455 | 3980 | 0.0638 | - | - |
|
806 |
+
| 9.0683 | 3990 | 0.0625 | - | - |
|
807 |
+
| 9.0911 | 4000 | 0.0665 | 0.0414 | 0.8276 |
|
808 |
+
| 9.1138 | 4010 | 0.0624 | - | - |
|
809 |
+
| 9.1366 | 4020 | 0.0621 | - | - |
|
810 |
+
| 9.1593 | 4030 | 0.0648 | - | - |
|
811 |
+
| 9.1821 | 4040 | 0.0622 | - | - |
|
812 |
+
| 9.2049 | 4050 | 0.0635 | - | - |
|
813 |
+
| 9.2276 | 4060 | 0.061 | - | - |
|
814 |
+
| 9.2504 | 4070 | 0.0602 | - | - |
|
815 |
+
| 9.2732 | 4080 | 0.0613 | - | - |
|
816 |
+
| 9.2959 | 4090 | 0.0604 | - | - |
|
817 |
+
| 9.3187 | 4100 | 0.0623 | - | - |
|
818 |
+
| 9.3414 | 4110 | 0.0641 | - | - |
|
819 |
+
| 9.3642 | 4120 | 0.0635 | - | - |
|
820 |
+
| 9.3870 | 4130 | 0.0608 | - | - |
|
821 |
+
| 9.4097 | 4140 | 0.0611 | - | - |
|
822 |
+
| 9.4325 | 4150 | 0.0607 | - | - |
|
823 |
+
| 9.4553 | 4160 | 0.0631 | - | - |
|
824 |
+
| 9.4780 | 4170 | 0.0618 | - | - |
|
825 |
+
| 9.5008 | 4180 | 0.0609 | - | - |
|
826 |
+
| 9.5235 | 4190 | 0.0613 | - | - |
|
827 |
+
| 9.5463 | 4200 | 0.0606 | - | - |
|
828 |
+
| 9.5691 | 4210 | 0.0595 | - | - |
|
829 |
+
| 9.5918 | 4220 | 0.0609 | - | - |
|
830 |
+
| 9.6146 | 4230 | 0.061 | - | - |
|
831 |
+
| 9.6374 | 4240 | 0.0616 | - | - |
|
832 |
+
| 9.6601 | 4250 | 0.0613 | 0.0418 | 0.8282 |
|
833 |
+
| 9.6829 | 4260 | 0.0623 | - | - |
|
834 |
+
| 9.7056 | 4270 | 0.0605 | - | - |
|
835 |
+
| 9.7284 | 4280 | 0.0637 | - | - |
|
836 |
+
| 9.7512 | 4290 | 0.0604 | - | - |
|
837 |
+
| 9.7739 | 4300 | 0.0606 | - | - |
|
838 |
+
| 9.7967 | 4310 | 0.0622 | - | - |
|
839 |
+
| 9.8195 | 4320 | 0.0598 | - | - |
|
840 |
+
| 9.8422 | 4330 | 0.0611 | - | - |
|
841 |
+
| 9.8650 | 4340 | 0.0604 | - | - |
|
842 |
+
| 9.8878 | 4350 | 0.0598 | - | - |
|
843 |
+
| 9.9105 | 4360 | 0.0626 | - | - |
|
844 |
+
| 9.9333 | 4370 | 0.0624 | - | - |
|
845 |
+
| 9.9560 | 4380 | 0.0617 | - | - |
|
846 |
+
| 9.9788 | 4390 | 0.0603 | - | - |
|
847 |
+
|
848 |
+
</details>
|
849 |
+
|
850 |
+
### Framework Versions
|
851 |
+
- Python: 3.11.10
|
852 |
+
- Sentence Transformers: 3.4.1
|
853 |
+
- Transformers: 4.48.3
|
854 |
+
- PyTorch: 2.5.1+cu124
|
855 |
+
- Accelerate: 1.3.0
|
856 |
+
- Datasets: 3.3.0
|
857 |
+
- Tokenizers: 0.21.0
|
858 |
+
|
859 |
+
## Citation
|
860 |
+
|
861 |
+
### BibTeX
|
862 |
+
|
863 |
+
#### Sentence Transformers
|
864 |
+
```bibtex
|
865 |
+
@inproceedings{reimers-2019-sentence-bert,
|
866 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
867 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
868 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
869 |
+
month = "11",
|
870 |
+
year = "2019",
|
871 |
+
publisher = "Association for Computational Linguistics",
|
872 |
+
url = "https://arxiv.org/abs/1908.10084",
|
873 |
+
}
|
874 |
+
```
|
875 |
+
|
876 |
+
<!--
|
877 |
+
## Glossary
|
878 |
+
|
879 |
+
*Clearly define terms in order to be accessible across audiences.*
|
880 |
+
-->
|
881 |
+
|
882 |
+
<!--
|
883 |
+
## Model Card Authors
|
884 |
+
|
885 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
886 |
+
-->
|
887 |
+
|
888 |
+
<!--
|
889 |
+
## Model Card Contact
|
890 |
+
|
891 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
892 |
+
-->
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.4.1",
|
4 |
+
"transformers": "4.48.3",
|
5 |
+
"pytorch": "2.5.1+cu124"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": "cosine"
|
10 |
+
}
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Dense",
|
18 |
+
"type": "sentence_transformers.models.Dense"
|
19 |
+
}
|
20 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 2048,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|