jhauret commited on
Commit
13a1724
1 Parent(s): 06a7816

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +63 -179
README.md CHANGED
@@ -1,199 +1,83 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
 
 
 
 
 
 
9
 
 
 
 
10
 
 
11
 
12
- ## Model Details
 
13
 
14
- ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
 
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
- ## Uses
 
 
 
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
 
 
39
 
40
- ### Direct Use
 
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
 
 
 
43
 
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ license: mit
4
+ language: fr
5
+ datasets:
6
+ - Cnam-LMSSC/vibravox
7
+ metrics:
8
+ - per
9
+ tags:
10
+ - audio
11
+ - automatic-speech-recognition
12
+ - speech
13
+ - phonemize
14
+ - phoneme
15
+ model-index:
16
+ - name: Wav2Vec2-base French finetuned for Speech-to-Phoneme by LMSSC
17
+ results:
18
+ - task:
19
+ name: Speech-to-Phoneme
20
+ type: automatic-speech-recognition
21
+ dataset:
22
+ name: Vibravox["body_conducted.temple.contact_microphone"]
23
+ type: Cnam-LMSSC/vibravox
24
+ args: fr
25
+ metrics:
26
+ - name: Test PER on Vibravox["body_conducted.temple.contact_microphone"] | Trained
27
+ type: per
28
+ value: 14.2
29
  ---
30
 
31
+ # Model Card
32
 
33
+ - **Developed by:** [Cnam-LMSSC](https://huggingface.co/Cnam-LMSSC)
34
+ - **Model type:** [Wav2Vec2ForCTC](https://huggingface.co/transformers/v4.9.2/model_doc/wav2vec2.html#transformers.Wav2Vec2ForCTC)
35
+ - **Language:** French
36
+ - **License:** MIT
37
+ - **Finetuned from model:** [facebook/wav2vec2-base-fr-voxpopuli-v2](https://huggingface.co/facebook/wav2vec2-base-fr-voxpopuli-v2)
38
+ - **Finetuned dataset:** `temple_vibration_pickup` audio of the `speech_clean` subset of [Cnam-LMSSC/vibravox](https://huggingface.co/datasets/Cnam-LMSSC/vibravox)
39
+ - **Samplerate for usage:** 16kHz
40
 
41
+ <p align="center">
42
+ <img src="https://cdn-uploads.huggingface.co/production/uploads/6390fc80e6d656eb421bab69/KkZoQQmrn53U6BTLmr0XK.png" />
43
+ </p>
44
 
45
+ ## Output
46
 
47
+ As this model is specifically trained for a speech-to-phoneme task, the output is sequence of [IPA-encoded](https://en.wikipedia.org/wiki/International_Phonetic_Alphabet) words, without punctuation.
48
+ If you don't read the phonetic alphabet fluently, you can use this excellent [IPA reader website](http://ipa-reader.xyz) to convert the transcript back to audio synthetic speech in order to check the quality of the phonetic transcription.
49
 
50
+ ## Link to other phonemizer models trained on other body conducted sensors :
51
 
52
+ An entry point to all **phonemizers** (speech-to-phoneme ASR) models trained on different sensor data from the trained on different sensor data from the [Vibravox dataset](https://huggingface.co/datasets/Cnam-LMSSC/vibravox) is available at [https://huggingface.co/Cnam-LMSSC/vibravox_phonemizers](https://huggingface.co/Cnam-LMSSC/vibravox_phonemizers).
53
 
54
+ ### Disclaimer
55
+ Each of these models has been trained for a **specific non-conventional speech sensor** and is intended to be used with **in-domain data**. The only exception is the headset microphone phonemizer, which can certainly be used for many applications using audio data captured by airborne microphones.
56
 
57
+ Please be advised that using these models outside their intended sensor data may result in suboptimal performance.
 
 
 
 
 
 
58
 
59
+ ## Training procedure
60
 
61
+ The model has been finetuned for 10 epochs with a constant learning rate of *1e-5*. To reproduce experiment please visit [jhauret/vibravox](https://github.com/jhauret/vibravox).
62
 
63
+ ## Inference script :
 
 
64
 
65
+ ```python
66
+ import torch, torchaudio
67
+ from transformers import AutoProcessor, AutoModelForCTC
68
+ from datasets import load_dataset
69
 
70
+ processor = AutoProcessor.from_pretrained("Cnam-LMSSC/phonemizer_temple_vibration_pickup")
71
+ model = AutoModelForCTC.from_pretrained("Cnam-LMSSC/phonemizer_temple_vibration_pickup")
72
+ test_dataset = load_dataset("Cnam-LMSSC/vibravox", "speech_clean", split="test", streaming=True)
73
 
74
+ audio_48kHz = torch.Tensor(next(iter(test_dataset))["audio.temple_vibration_pickup"]["array"])
75
+ audio_16kHz = torchaudio.functional.resample(audio_48kHz, orig_freq=48_000, new_freq=16_000)
76
 
77
+ inputs = processor(audio_16kHz, sampling_rate=16_000, return_tensors="pt")
78
+ logits = model(inputs.input_values).logits
79
+ predicted_ids = torch.argmax(logits,dim = -1)
80
+ transcription = processor.batch_decode(predicted_ids)
81
 
82
+ print("Phonetic transcription : ", transcription)
83
+ ```