MaloOLIVIER commited on
Commit
b793da5
·
verified ·
1 Parent(s): 119333f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +9 -9
README.md CHANGED
@@ -9,21 +9,21 @@ tags:
9
  datasets:
10
  - Cnam-LMSSC/vibravox
11
  model-index:
12
- - name: EBEN(M=?,P=?,Q=?)
13
  results:
14
  - task:
15
  type: speech-enhancement
16
  name: Bandwidth Extension
17
  dataset:
18
- name: Vibravox["YOUR_MIC"]
19
  type: Cnam-LMSSC/vibravox
20
  args: fr
21
  metrics:
22
  - type: stoi
23
- value: ???
24
  name: Test STOI, in-domain training
25
  - type: n-mos
26
- value: ???
27
  name: Test Noresqa-MOS, in-domain training
28
  ---
29
 
@@ -37,7 +37,7 @@ model-index:
37
  - **Model:** [EBEN(M=?,P=?,Q=?)](https://github.com/jhauret/vibravox/blob/main/vibravox/torch_modules/dnn/eben_generator.py) (see [publication in IEEE TASLP](https://ieeexplore.ieee.org/document/10244161) - [arXiv link](https://arxiv.org/abs/2303.10008))
38
  - **Language:** French
39
  - **License:** MIT
40
- - **Training dataset:** `speech_clean` subset of [Cnam-LMSSC/vibravox](https://huggingface.co/datasets/Cnam-LMSSC/vibravox)
41
  - **Samplerate for usage:** 16kHz
42
 
43
  ## Overview
@@ -62,12 +62,12 @@ import torch, torchaudio
62
  from vibravox.torch_modules.dnn.eben_generator import EBENGenerator
63
  from datasets import load_dataset
64
 
65
- model = EBENGenerator.from_pretrained("Cnam-LMSSC/EBEN_YOUR_MIC")
66
- test_dataset = load_dataset("Cnam-LMSSC/vibravox", "speech_clean", split="test", streaming=True)
67
 
68
- audio_48kHz = torch.Tensor(next(iter(test_dataset))["audio.YOUR_MIC"]["array"])
69
  audio_16kHz = torchaudio.functional.resample(audio_48kHz, orig_freq=48_000, new_freq=16_000)
70
 
71
  cut_audio_16kHz = model.cut_to_valid_length(audio_16kHz[None, None, :])
72
- enhanced_audio_16kHz, enhanced_audio_decomposed_4kHz = model(cut_audio_16kHz)
73
  ```
 
9
  datasets:
10
  - Cnam-LMSSC/vibravox
11
  model-index:
12
+ - name: EBEN(M=4,P=2,Q=4)
13
  results:
14
  - task:
15
  type: speech-enhancement
16
  name: Bandwidth Extension
17
  dataset:
18
+ name: Vibravox["rigid_in_ear_microphone"]
19
  type: Cnam-LMSSC/vibravox
20
  args: fr
21
  metrics:
22
  - type: stoi
23
+ value: 0.679
24
  name: Test STOI, in-domain training
25
  - type: n-mos
26
+ value: 3.21
27
  name: Test Noresqa-MOS, in-domain training
28
  ---
29
 
 
37
  - **Model:** [EBEN(M=?,P=?,Q=?)](https://github.com/jhauret/vibravox/blob/main/vibravox/torch_modules/dnn/eben_generator.py) (see [publication in IEEE TASLP](https://ieeexplore.ieee.org/document/10244161) - [arXiv link](https://arxiv.org/abs/2303.10008))
38
  - **Language:** French
39
  - **License:** MIT
40
+ - **Training dataset:** `speech_noisy` subset of [Cnam-LMSSC/vibravox](https://huggingface.co/datasets/Cnam-LMSSC/vibravox) (see [VibraVox paper on arXiV](https://arxiv.org/abs/2407.11828))
41
  - **Samplerate for usage:** 16kHz
42
 
43
  ## Overview
 
62
  from vibravox.torch_modules.dnn.eben_generator import EBENGenerator
63
  from datasets import load_dataset
64
 
65
+ model = EBENGenerator.from_pretrained("Cnam-LMSSC/EBEN_noisy_rigid_in_ear_microphone")
66
+ test_dataset = load_dataset("Cnam-LMSSC/vibravox", "speech_noisy", split="test", streaming=True)
67
 
68
+ audio_48kHz = torch.Tensor(next(iter(test_dataset))["audio.rigid_in_ear_microphone"]["array"])
69
  audio_16kHz = torchaudio.functional.resample(audio_48kHz, orig_freq=48_000, new_freq=16_000)
70
 
71
  cut_audio_16kHz = model.cut_to_valid_length(audio_16kHz[None, None, :])
72
+ enhanced_audio_16kHz, enhanced_speech_decomposed = model(cut_audio_16kHz)
73
  ```