update apply delta
Browse files- apply_delta.py +164 -0
apply_delta.py
ADDED
@@ -0,0 +1,164 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Apply the delta weights on top of a base model.
|
3 |
+
|
4 |
+
Usage:
|
5 |
+
python3 apply_delta.py --base ~/model_weights/llama-7b --target ~/model_weights/ChatYuan-7b --delta ~/model_weights/ChatYuan-7b-delta
|
6 |
+
"""
|
7 |
+
import argparse
|
8 |
+
import gc
|
9 |
+
import glob
|
10 |
+
import json
|
11 |
+
import os
|
12 |
+
import shutil
|
13 |
+
import tempfile
|
14 |
+
|
15 |
+
import torch
|
16 |
+
from torch import nn
|
17 |
+
from tqdm import tqdm
|
18 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig
|
19 |
+
|
20 |
+
|
21 |
+
GB = 1 << 30
|
22 |
+
|
23 |
+
|
24 |
+
def split_files(model_path, tmp_path, split_size):
|
25 |
+
if not os.path.exists(tmp_path):
|
26 |
+
os.makedirs(tmp_path)
|
27 |
+
|
28 |
+
file_pattern = os.path.join(model_path, "pytorch_model-*.bin")
|
29 |
+
files = glob.glob(file_pattern)
|
30 |
+
|
31 |
+
part = 0
|
32 |
+
try:
|
33 |
+
for file_path in tqdm(files):
|
34 |
+
state_dict = torch.load(file_path)
|
35 |
+
new_state_dict = {}
|
36 |
+
|
37 |
+
current_size = 0
|
38 |
+
for name, param in state_dict.items():
|
39 |
+
param_size = param.numel() * param.element_size()
|
40 |
+
|
41 |
+
if current_size + param_size > split_size:
|
42 |
+
new_file_name = f"pytorch_model-{part}.bin"
|
43 |
+
new_file_path = os.path.join(tmp_path, new_file_name)
|
44 |
+
torch.save(new_state_dict, new_file_path)
|
45 |
+
current_size = 0
|
46 |
+
new_state_dict = None
|
47 |
+
gc.collect()
|
48 |
+
new_state_dict = {}
|
49 |
+
part += 1
|
50 |
+
|
51 |
+
new_state_dict[name] = param
|
52 |
+
current_size += param_size
|
53 |
+
|
54 |
+
new_file_name = f"pytorch_model-{part}.bin"
|
55 |
+
new_file_path = os.path.join(tmp_path, new_file_name)
|
56 |
+
torch.save(new_state_dict, new_file_path)
|
57 |
+
new_state_dict = None
|
58 |
+
gc.collect()
|
59 |
+
new_state_dict = {}
|
60 |
+
part += 1
|
61 |
+
except Exception as e:
|
62 |
+
print(f"An error occurred during split_files: {e}")
|
63 |
+
shutil.rmtree(tmp_path)
|
64 |
+
raise
|
65 |
+
|
66 |
+
|
67 |
+
def apply_delta_low_cpu_mem(base_model_path, target_model_path, delta_path):
|
68 |
+
delta_tokenizer = AutoTokenizer.from_pretrained(delta_path, use_fast=False)
|
69 |
+
delta_config = AutoConfig.from_pretrained(delta_path)
|
70 |
+
|
71 |
+
if os.path.exists(target_model_path):
|
72 |
+
shutil.rmtree(target_model_path)
|
73 |
+
os.makedirs(target_model_path)
|
74 |
+
|
75 |
+
split_size = 4 * GB
|
76 |
+
|
77 |
+
with tempfile.TemporaryDirectory() as tmp_base_path, tempfile.TemporaryDirectory() as tmp_delta_path:
|
78 |
+
print(f"Split files for the base model to {tmp_base_path}")
|
79 |
+
split_files(base_model_path, tmp_base_path, split_size)
|
80 |
+
print(f"Split files for the delta weights to {tmp_delta_path}")
|
81 |
+
split_files(delta_path, tmp_delta_path, split_size)
|
82 |
+
|
83 |
+
base_pattern = os.path.join(tmp_base_path, "pytorch_model-*.bin")
|
84 |
+
base_files = glob.glob(base_pattern)
|
85 |
+
delta_pattern = os.path.join(tmp_delta_path, "pytorch_model-*.bin")
|
86 |
+
delta_files = glob.glob(delta_pattern)
|
87 |
+
delta_state_dict = torch.load(delta_files[0])
|
88 |
+
|
89 |
+
print("Applying the delta")
|
90 |
+
weight_map = {}
|
91 |
+
total_size = 0
|
92 |
+
|
93 |
+
for i, base_file in tqdm(enumerate(base_files)):
|
94 |
+
state_dict = torch.load(base_file)
|
95 |
+
file_name = f"pytorch_model-{i}.bin"
|
96 |
+
for name, param in state_dict.items():
|
97 |
+
if name not in delta_state_dict:
|
98 |
+
for delta_file in delta_files:
|
99 |
+
delta_state_dict = torch.load(delta_file)
|
100 |
+
gc.collect()
|
101 |
+
if name in delta_state_dict:
|
102 |
+
break
|
103 |
+
|
104 |
+
state_dict[name] += delta_state_dict[name]
|
105 |
+
weight_map[name] = file_name
|
106 |
+
total_size += param.numel() * param.element_size()
|
107 |
+
gc.collect()
|
108 |
+
torch.save(state_dict, os.path.join(target_model_path, file_name))
|
109 |
+
|
110 |
+
with open(
|
111 |
+
os.path.join(target_model_path, "pytorch_model.bin.index.json"), "w"
|
112 |
+
) as f:
|
113 |
+
json.dump(
|
114 |
+
{"weight_map": weight_map, "metadata": {"total_size": total_size}}, f
|
115 |
+
)
|
116 |
+
|
117 |
+
print(f"Saving the target model to {target_model_path}")
|
118 |
+
delta_tokenizer.save_pretrained(target_model_path)
|
119 |
+
delta_config.save_pretrained(target_model_path)
|
120 |
+
|
121 |
+
|
122 |
+
def apply_delta(base_model_path, target_model_path, delta_path):
|
123 |
+
print(f"Loading the delta weights from {delta_path}")
|
124 |
+
delta_tokenizer = AutoTokenizer.from_pretrained(delta_path, use_fast=False)
|
125 |
+
delta = AutoModelForCausalLM.from_pretrained(
|
126 |
+
delta_path, torch_dtype=torch.float16, low_cpu_mem_usage=True
|
127 |
+
)
|
128 |
+
|
129 |
+
print(f"Loading the base model from {base_model_path}")
|
130 |
+
base = AutoModelForCausalLM.from_pretrained(
|
131 |
+
base_model_path, torch_dtype=torch.float16, low_cpu_mem_usage=True
|
132 |
+
)
|
133 |
+
|
134 |
+
print("Applying the delta")
|
135 |
+
for name, param in tqdm(base.state_dict().items(), desc="Applying delta"):
|
136 |
+
assert name in delta.state_dict()
|
137 |
+
param.data += delta.state_dict()[name]
|
138 |
+
|
139 |
+
print(f"Saving the target model to {target_model_path}")
|
140 |
+
base.save_pretrained(target_model_path)
|
141 |
+
delta_tokenizer.save_pretrained(target_model_path)
|
142 |
+
|
143 |
+
|
144 |
+
if __name__ == "__main__":
|
145 |
+
parser = argparse.ArgumentParser()
|
146 |
+
parser.add_argument("--base-model-path", type=str, required=True)
|
147 |
+
parser.add_argument("--target-model-path", type=str, required=True)
|
148 |
+
parser.add_argument("--delta-path", type=str, required=True)
|
149 |
+
parser.add_argument(
|
150 |
+
"--low-cpu-mem",
|
151 |
+
action="store_true",
|
152 |
+
help="Lower the cpu memory usage. This will split large files and use "
|
153 |
+
"disk as swap to reduce the memory usage below 10GB.",
|
154 |
+
)
|
155 |
+
args = parser.parse_args()
|
156 |
+
|
157 |
+
print(args.base_model_path, args.target_model_path, args.delta_path)
|
158 |
+
|
159 |
+
if args.low_cpu_mem:
|
160 |
+
apply_delta_low_cpu_mem(
|
161 |
+
args.base_model_path, args.target_model_path, args.delta_path
|
162 |
+
)
|
163 |
+
else:
|
164 |
+
apply_delta(args.base_model_path, args.target_model_path, args.delta_path)
|