ClementP commited on
Commit
1888ad8
1 Parent(s): fc59327

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +51 -5
README.md CHANGED
@@ -1,9 +1,55 @@
1
  ---
 
 
2
  tags:
3
- - pytorch_model_hub_mixin
4
- - model_hub_mixin
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
  ---
 
 
 
 
 
 
 
 
 
 
6
 
7
- This model has been pushed to the Hub using ****:
8
- - Repo: [More Information Needed]
9
- - Docs: [More Information Needed]
 
1
  ---
2
+ language: en
3
+ license: mit
4
  tags:
5
+ - fundus
6
+ - diabetic retinopathy
7
+ - classification
8
+ datasets:
9
+ - APTOS
10
+ - EYEPACS
11
+ - IDRID
12
+ - DDR
13
+ library: timm
14
+ model-index:
15
+ - name: efficientnet_b0
16
+ results:
17
+ - task:
18
+ type: image-classification
19
+ dataset:
20
+ name: EYEPACS
21
+ type: EYEPACS
22
+ metrics:
23
+ - type: kappa
24
+ value: 0.7514463067054749
25
+ name: Quadratic Kappa
26
+ - task:
27
+ type: image-classification
28
+ dataset:
29
+ name: IDRID
30
+ type: IDRID
31
+ metrics:
32
+ - type: kappa
33
+ value: 0.7511317133903503
34
+ name: Quadratic Kappa
35
+ - task:
36
+ type: image-classification
37
+ dataset:
38
+ name: DDR
39
+ type: DDR
40
+ metrics:
41
+ - type: kappa
42
+ value: 0.7121561765670776
43
+ name: Quadratic Kappa
44
  ---
45
+ # Fundus DR Grading
46
+
47
+ [![Rye](https://img.shields.io/endpoint?url=https://raw.githubusercontent.com/astral-sh/rye/main/artwork/badge.json)](https://rye-up.com)
48
+ [![PyTorch](https://img.shields.io/badge/PyTorch-ee4c2c?logo=pytorch&logoColor=white)](https://pytorch.org/docs/stable/index.html)
49
+ [![Lightning](https://img.shields.io/badge/Lightning-792ee5?logo=lightning&logoColor=white)](https://lightning.ai/docs/pytorch/stable/)
50
+
51
+ ## Description
52
+
53
+ This project aims to evaluate the performance of different models for the classification of diabetic retinopathy (DR) in fundus images. The reported perfomance metrics are not always consistent in the literature. Our goal is to provide a fair comparison between different models using the same datasets and evaluation protocol.
54
+
55