Clawoo commited on
Commit
054219a
1 Parent(s): 6219f0e

Upload PPO LunarLander-v2 trained agent

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: 258.82 +/- 21.57
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 279.47 +/- 16.18
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3d970b95e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3d970b9670>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3d970b9700>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3d970b9790>", "_build": "<function ActorCriticPolicy._build at 0x7f3d970b9820>", "forward": "<function ActorCriticPolicy.forward at 0x7f3d970b98b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3d970b9940>", "_predict": "<function ActorCriticPolicy._predict at 0x7f3d970b99d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3d970b9a60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3d970b9af0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3d970b9b80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f3d970afed0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1212416, "_total_timesteps": 1200000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670757826039568267, "learning_rate": 0.0005, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/QGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEDIjz3eF6w9Sse1vRl0eb5Ulum8PTlSOwAAAAAAAAAAwJygPcNZdbp5/pm7Fykvt3B+TLpnNLI6AACAPwAAgD8z0/67OaagPi6hJr06r46+O+z/OwuLHz0AAAAAAAAAAIDuWr2P5ly6/DI3vKsNSza5Hwy5uiK7tQAAgD8AAIA/zQbWvCkYKboqZCc2zUbmr+MPlDkiikC1AACAPwAAgD9mIIk+s+IpP6FRL74jpH++5cQpPUwhNr4AAAAAAAAAAOZZED1P8VY/RyGgO20KxL5/zts81SbqvAAAAAAAAAAAmqmvPCmMTrrOrAm8JPJdteBSgrtFicY0AACAPwAAgD8A9GO94+kTP0UOXzxedZS+rn3AvOOeFL0AAAAAAAAAAGa2YjuPYl+67k+EOnfCWbahP4G7v9mZuQAAgD8AAIA/aimtPsi/Kj8ex4C9FmLGvldSUj49Lfm9AAAAAAAAAABA0V8+N59sP7jKu7wSWay+lCLfPUs3Yr0AAAAAAAAAAM1Mq7spKEy6heQ9uLrbGrPShZW7FhdgNwAAgD8AAIA/5vpXPfa4HbrSNKI7M7rttaSjoLvou766AACAPwAAgD/N2UW9j94xus6VjLoiBVI0XDipuziwozkAAIA/AACAP7Pn8j1SwrI6jwLLvTKadrzFnK484mVbvQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.010346666666666726, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVehAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIVkRN9PkmZkCUhpRSlIwBbJRN6AOMAXSUR0ClLKj7qIJrdX2UKGgGaAloD0MI34lZL4byY0CUhpRSlGgVTegDaBZHQKUs1oNd7fJ1fZQoaAZoCWgPQwioVfSH5qpmQJSGlFKUaBVN6ANoFkdApTEp+z+m33V9lChoBmgJaA9DCINqgxNR/GRAlIaUUpRoFU3oA2gWR0ClMvCzTnaGdX2UKGgGaAloD0MIFeC7zZvwYkCUhpRSlGgVTegDaBZHQKUzD/SYw7F1fZQoaAZoCWgPQwiVfsLZLeNoQJSGlFKUaBVN6ANoFkdApTf0TviLl3V9lChoBmgJaA9DCFvPEI7ZfWFAlIaUUpRoFU3oA2gWR0ClOPBisny/dX2UKGgGaAloD0MI0Vj7O9tDYkCUhpRSlGgVTegDaBZHQKU70PJ7sv91fZQoaAZoCWgPQwjyYIvdPlJiQJSGlFKUaBVN6ANoFkdApTyr8cdYGXV9lChoBmgJaA9DCLIQHQLHvmJAlIaUUpRoFU3oA2gWR0ClPdbzbvgFdX2UKGgGaAloD0MID3wMVpyOZUCUhpRSlGgVTegDaBZHQKVI+HGCI1t1fZQoaAZoCWgPQwgPK9zyEaViQJSGlFKUaBVN6ANoFkdApUki0hNdq3V9lChoBmgJaA9DCM2ueyuSVWRAlIaUUpRoFU3oA2gWR0ClSX6/IsAedX2UKGgGaAloD0MIu/HuyFjQYkCUhpRSlGgVTegDaBZHQKVJunP3SKF1fZQoaAZoCWgPQwjSGoNOCIVhQJSGlFKUaBVN6ANoFkdApUzBuVHFxXV9lChoBmgJaA9DCLQdU3dlC09AlIaUUpRoFU0BAWgWR0ClTWslTm4idX2UKGgGaAloD0MILnO6LCZ2N0CUhpRSlGgVS95oFkdApU+aY3Ns33V9lChoBmgJaA9DCJZ4QNmUTUJAlIaUUpRoFUvaaBZHQKVTHsj3VTd1fZQoaAZoCWgPQwi9VkJ3SctjQJSGlFKUaBVN6ANoFkdApVOxouf29XV9lChoBmgJaA9DCE1nJ4Mj9mFAlIaUUpRoFU3oA2gWR0ClU+xkd3jddX2UKGgGaAloD0MIwoTRrGxjYUCUhpRSlGgVTegDaBZHQKVUFcB2fTV1fZQoaAZoCWgPQwiorKbriU1RQJSGlFKUaBVL52gWR0ClVDu9OARTdX2UKGgGaAloD0MIN1MhHomBRUCUhpRSlGgVS+ZoFkdApVYnHT7VKHV9lChoBmgJaA9DCBn+0w2UiGFAlIaUUpRoFU3oA2gWR0ClV6xvWH1wdX2UKGgGaAloD0MIKLnDJrKbY0CUhpRSlGgVTegDaBZHQKVZJmlImPZ1fZQoaAZoCWgPQwisdHedjbtgQJSGlFKUaBVN6ANoFkdApVk/x+az/3V9lChoBmgJaA9DCDZ0sz9Q91FAlIaUUpRoFUvFaBZHQKVbF71Iy0t1fZQoaAZoCWgPQwiPOc/Yl9xjQJSGlFKUaBVN6ANoFkdApV15hH9WIXV9lChoBmgJaA9DCMYWghwUWmRAlIaUUpRoFU3oA2gWR0ClXk2912aEdX2UKGgGaAloD0MI1GTG20oGYkCUhpRSlGgVTegDaBZHQKVg4Lb5/LF1fZQoaAZoCWgPQwi86gHzEIhlQJSGlFKUaBVN6ANoFkdApWLCy2QXAXV9lChoBmgJaA9DCI8c6QwMj2RAlIaUUpRoFU3oA2gWR0ClZBlxOtW/dX2UKGgGaAloD0MIq8spATHpX0CUhpRSlGgVTegDaBZHQKVt1N9H+ZR1fZQoaAZoCWgPQwjdJXFWRKFRQJSGlFKUaBVL1WgWR0Clbep2ll9SdX2UKGgGaAloD0MIMbQ6OUOQYUCUhpRSlGgVTegDaBZHQKVuNGYKIBR1fZQoaAZoCWgPQwgJ3SVxVlteQJSGlFKUaBVN6ANoFkdApXinepGWlnV9lChoBmgJaA9DCCHNWDQdOmBAlIaUUpRoFU3oA2gWR0CleUHI6r/9dX2UKGgGaAloD0MIatyb37COZECUhpRSlGgVTegDaBZHQKV5h4dIXj51fZQoaAZoCWgPQwgi4uZUMrdlQJSGlFKUaBVN6ANoFkdApXm2qgh8pnV9lChoBmgJaA9DCA98DFYcGmJAlIaUUpRoFU3oA2gWR0CleeGSpzcRdX2UKGgGaAloD0MIJa5jXPFxZ0CUhpRSlGgVTegDaBZHQKV95dqtYCB1fZQoaAZoCWgPQwhrRga5ix5kQJSGlFKUaBVN6ANoFkdApX+i8UVSGnV9lChoBmgJaA9DCFYPmIfMb2FAlIaUUpRoFU3oA2gWR0Clf8Km8/UwdX2UKGgGaAloD0MIYMsr19tHZECUhpRSlGgVTegDaBZHQKWCCHqu8sd1fZQoaAZoCWgPQwhEUDV6NWFdQJSGlFKUaBVN6ANoFkdApYUs+NcW03V9lChoBmgJaA9DCLmrV5FRW2RAlIaUUpRoFU3oA2gWR0CliYW4NI9UdX2UKGgGaAloD0MIRDUlWYekYkCUhpRSlGgVTegDaBZHQKWL7qj8DSx1fZQoaAZoCWgPQwjZlZaRelJiQJSGlFKUaBVN6ANoFkdApY2KwMYuTXV9lChoBmgJaA9DCLn8h/TbG2VAlIaUUpRoFU3oA2gWR0CljcLl/6O6dX2UKGgGaAloD0MIigYpeAosZECUhpRSlGgVTegDaBZHQKWN332VVxV1fZQoaAZoCWgPQwgwgPChRH9lQJSGlFKUaBVN6ANoFkdApY4xmK64D3V9lChoBmgJaA9DCJiiXBq/FWJAlIaUUpRoFU3oA2gWR0Clouwqqfe2dX2UKGgGaAloD0MIFJM3wMz4ZUCUhpRSlGgVTegDaBZHQKWjlleWv8t1fZQoaAZoCWgPQwgu4jsx65JlQJSGlFKUaBVN6ANoFkdApaPgEr5IpnV9lChoBmgJaA9DCFzLZDieDWFAlIaUUpRoFU3oA2gWR0ClpBEBsANodX2UKGgGaAloD0MIzR5oBYZcYUCUhpRSlGgVTegDaBZHQKWkQA9V3ll1fZQoaAZoCWgPQwgxW7IqwllkQJSGlFKUaBVN6ANoFkdApafsz0pVj3V9lChoBmgJaA9DCLU3+MJk22FAlIaUUpRoFU3oA2gWR0ClqXoTfzjFdX2UKGgGaAloD0MIbTgsDXzfYECUhpRSlGgVTegDaBZHQKWplTEzfrN1fZQoaAZoCWgPQwjThy6obzhhQJSGlFKUaBVN6ANoFkdApauU4PwuunV9lChoBmgJaA9DCNIcWflllGNAlIaUUpRoFU3oA2gWR0ClrfIFNcnmdX2UKGgGaAloD0MI/rrTnaeTZ0CUhpRSlGgVTegDaBZHQKWxlrv9cbB1fZQoaAZoCWgPQwhMbamDPJxkQJSGlFKUaBVN6ANoFkdApbOCXOW0JHV9lChoBmgJaA9DCIO/X8yW7AxAlIaUUpRoFUvjaBZHQKW0mTW5H3F1fZQoaAZoCWgPQwjZs+cyNfxgQJSGlFKUaBVN6ANoFkdApbTVBIFvAHV9lChoBmgJaA9DCFotsMdESGFAlIaUUpRoFU3oA2gWR0CltPzLwF1TdX2UKGgGaAloD0MI5sk1BbIaZkCUhpRSlGgVTegDaBZHQKW1EB+Wnj11fZQoaAZoCWgPQwiJfQIoxqVkQJSGlFKUaBVN6ANoFkdApbVO/+Kjz3V9lChoBmgJaA9DCNYe9kKBa2hAlIaUUpRoFU3oA2gWR0ClyQFhG6PKdX2UKGgGaAloD0MIUaT7OYU4ZUCUhpRSlGgVTegDaBZHQKXJpHJ9y951fZQoaAZoCWgPQwjWHYttUkFjQJSGlFKUaBVN6ANoFkdApcnrDsMRYnV9lChoBmgJaA9DCLezrzxIcmBAlIaUUpRoFU3oA2gWR0Clyhv/io87dX2UKGgGaAloD0MI5bSn5JwqYkCUhpRSlGgVTegDaBZHQKXKRvDP4VR1fZQoaAZoCWgPQwjaHOc24WVkQJSGlFKUaBVN6ANoFkdApc5HjbSJCXV9lChoBmgJaA9DCNXQBmCDm2BAlIaUUpRoFU3oA2gWR0Clz/htk4FSdX2UKGgGaAloD0MIOsyXF2CMZkCUhpRSlGgVTegDaBZHQKXQE6aLGaR1fZQoaAZoCWgPQwh9JCU9jK1gQJSGlFKUaBVN6ANoFkdApdIQz1schnV9lChoBmgJaA9DCLZMhuN5bmZAlIaUUpRoFU3oA2gWR0Cl1/4AbQ1KdX2UKGgGaAloD0MISbpm8k13YkCUhpRSlGgVTegDaBZHQKXZ8wM6RyR1fZQoaAZoCWgPQwgzb9V1qHBjQJSGlFKUaBVN6ANoFkdApdsJbOeJ53V9lChoBmgJaA9DCAqgGFmyr2JAlIaUUpRoFU3oA2gWR0Cl20HHmzSkdX2UKGgGaAloD0MIOPbsuUytZUCUhpRSlGgVTegDaBZHQKXbaTNdJJ51fZQoaAZoCWgPQwj8VuvE5Q1eQJSGlFKUaBVN6ANoFkdApdt8TlDF63V9lChoBmgJaA9DCHkkXp7Ox2NAlIaUUpRoFU3oA2gWR0Cl28AYxcmjdX2UKGgGaAloD0MIfNEeLyT5YUCUhpRSlGgVTegDaBZHQKXuNMdtEXt1fZQoaAZoCWgPQwi2uTE9YeNfQJSGlFKUaBVN6ANoFkdApe6/HtF8X3V9lChoBmgJaA9DCIWZtn9lOmNAlIaUUpRoFU3oA2gWR0Cl7virksBidX2UKGgGaAloD0MI3UWYolyNY0CUhpRSlGgVTegDaBZHQKXvIhtcfNl1fZQoaAZoCWgPQwjFAIkm0K1jQJSGlFKUaBVN6ANoFkdApe9E8kleGHV9lChoBmgJaA9DCKPNcW6TZWdAlIaUUpRoFU3oA2gWR0Cl8qOFxn3+dX2UKGgGaAloD0MI4jrGFZcYZ0CUhpRSlGgVTegDaBZHQKX0evg3tKJ1fZQoaAZoCWgPQwggJAuYwPdgQJSGlFKUaBVN6ANoFkdApfSf9UCJXXV9lChoBmgJaA9DCDNuaqB5b2FAlIaUUpRoFU3oA2gWR0Cl9weHSF4+dX2UKGgGaAloD0MI/YNIhhwIYECUhpRSlGgVTegDaBZHQKX9TijtXxR1fZQoaAZoCWgPQwgXtmYrL1NmQJSGlFKUaBVN6ANoFkdApf8NhsqJ/HV9lChoBmgJaA9DCFOWIY51jGhAlIaUUpRoFU3oA2gWR0Cl//aDwpfAdX2UKGgGaAloD0MIufscH614ZUCUhpRSlGgVTegDaBZHQKYAJnV5KOF1fZQoaAZoCWgPQwjvchHfCTJnQJSGlFKUaBVN6ANoFkdApgBIgX/HYHV9lChoBmgJaA9DCKpE2VvKamVAlIaUUpRoFU3oA2gWR0CmAFsHjZL7dX2UKGgGaAloD0MIPusaLQd1YkCUhpRSlGgVTegDaBZHQKYAlKGL1mJ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 296, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd6f6268820>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd6f62688b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd6f6268940>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd6f62689d0>", "_build": "<function ActorCriticPolicy._build at 0x7fd6f6268a60>", "forward": "<function ActorCriticPolicy.forward at 0x7fd6f6268af0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd6f6268b80>", "_predict": "<function ActorCriticPolicy._predict at 0x7fd6f6268c10>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd6f6268ca0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd6f6268d30>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd6f6268dc0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fd6f62691e0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 32, "num_timesteps": 2031616, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670854025827987854, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAANr7h71Iy5S6y2TSOPNRxTPozz66pUjztwAAgD8AAIA/ANYyPEh/gLpiqCi6AHEltbRGrbnd+0Q5AACAPwAAgD9NBmS9SLeNupQxLbhz4CKzwZtSunawSDcAAIA/AACAPzOItby3rBg+wL73vVLZj76YhH28mJwZvQAAAAAAAAAAMxU4POHcrbpKVI859WKJNGq0ZblSaKO4AACAPwAAgD/NB9W8owoXPQGXlr4cOF6+aQPuvCkySz0AAAAAAAAAAGZ63bzhYJO6MhdKufen17Npubm5uH9oOAAAgD8AAIA/zcw9uSloLbpuwCA4AqsyM5H1kjuwlj63AACAPwAAgD/NfDo7BQzhPgd+Jb2JNcC+iZenvLGoij0AAAAAAAAAADNXjL0koZQ//SONvuZVEr80WtK9yWuavQAAAAAAAAAADdHcvSlkN7rKe3A7ZIRhOBY1nbt23xS6AACAPwAAAAAAjwu9VxmWP/go871tdw6/kY+PvSo1qr0AAAAAAAAAABp9C73hdKm6/D2POeY6izS2ZI65aqijuAAAgD8AAIA/XSNVvvsCz7yNZWy7cevmufwbOj5WLJs6AACAPwAAgD9gA4Q+BVHnPKfNJTvvY+U5ZXx8PnUoaroAAIA/AAAAAGANaT6ZqfE+5Sgqv84gz750SJs+QG+5vgAAAAAAAAAAwJyXvUgPh7qrbSA4wIYCM8a9TTpPBjq3AAAAAAAAgD8z83E86f8gvAVarjpeI7I8vNCLPTHVkb0AAIA/AACAP8A5lj1XegI+30iUvpPJab5snUu9qwqVPAAAAAAAAAAAANHTPIM+JD0K7GY8LwuMvuiygz1ULUU8AAAAAAAAAAAA2iO8j7JIulOyX7lm5p8x7swbu7IIgjgAAIA/AACAP5qj0DwKrGe7I01UvIq6YTzMG7K84sxDPQAAgD8AAIA/wy2NPp3Iqj7NaWS+lJmXvj5xHj5qKiS9AAAAAAAAAABavOS9ro+QutzTk7oaXJK2yWUbO7PSpzkAAIA/AAAAANoY6b2PRkW6S61oO4DGQbSROUC6ujrLswAAgD8AAIA/s2e/vcO1fLrssyo8hLW6thwDBjvuNLG1AAAAAAAAgD+AHhu9KSAJulpI5zoErCm1tUSKu+YMCLoAAIA/AACAP00jwr2Pnla66cA3uVW5gzICvMu61VpUOAAAgD8AAAAApiyFveFoqbqdSZW1kyKUsC4gnDopxak0AACAPwAAgD+Nja699rgRuqg1WDw18wE180qiOx1M3TMAAAAAAAAAAO1QEb5puXq88t11vuHmXjtaxLU9NtSDvAAAgD8AAIA/ZlG9veF4nLoY5uy3Dx7jsuaymbq6jwg3AAAAAAAAgD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVZBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIO44fKk2EcECUhpRSlIwBbJRL+4wBdJRHQLJ+cnBLwnZ1fZQoaAZoCWgPQwgmjjwQGc9xQJSGlFKUaBVNUQFoFkdAsn7ienQ6ZHV9lChoBmgJaA9DCILlCBnIc0tAlIaUUpRoFUusaBZHQLJ/MQV9F4N1fZQoaAZoCWgPQwi5quy74tVwQJSGlFKUaBVNsAFoFkdAsn8120Re1XV9lChoBmgJaA9DCOpae58qJ29AlIaUUpRoFU1GAWgWR0CyfzsHGCI2dX2UKGgGaAloD0MIIAiQoaMncUCUhpRSlGgVTYABaBZHQLJ/Pv/BFd91fZQoaAZoCWgPQwivzjEgO4xyQJSGlFKUaBVNSwJoFkdAsn90q/dqL3V9lChoBmgJaA9DCJXW3xLA7XBAlIaUUpRoFU22AWgWR0Cyf92SpzcRdX2UKGgGaAloD0MIY+/FF62AcUCUhpRSlGgVTRABaBZHQLKAFqRU3n91fZQoaAZoCWgPQwg57//jBEpzQJSGlFKUaBVL4WgWR0CygClEVnEmdX2UKGgGaAloD0MIP+PCgdDtcECUhpRSlGgVTQQBaBZHQLKAbv5xiod1fZQoaAZoCWgPQwj4+lqXGppsQJSGlFKUaBVNCAFoFkdAsoB3iWE9MnV9lChoBmgJaA9DCJV/La/cI3FAlIaUUpRoFU0dAWgWR0CygJcAeaKDdX2UKGgGaAloD0MIliAjoMKJQMCUhpRSlGgVS6BoFkdAsoCbPZ7HAHV9lChoBmgJaA9DCA8pBkh04HFAlIaUUpRoFU2wAWgWR0CygKcd1dPddX2UKGgGaAloD0MIhnR4CGNEcECUhpRSlGgVTdsBaBZHQLKAs5ooNNJ1fZQoaAZoCWgPQwiPcjCbQGFxQJSGlFKUaBVNCgFoFkdAsoDw6YE4enV9lChoBmgJaA9DCGlVSzrKUHJAlIaUUpRoFU0RAWgWR0CygSN3r2QGdX2UKGgGaAloD0MI/+px32oQc0CUhpRSlGgVS/FoFkdAsoEyGCZnc3V9lChoBmgJaA9DCLABEeJKt21AlIaUUpRoFUv/aBZHQLKBNjBEa2p1fZQoaAZoCWgPQwg5s12hDwZxQJSGlFKUaBVL/mgWR0CygUQhOgxrdX2UKGgGaAloD0MI42w6ArhdckCUhpRSlGgVS+5oFkdAsoFONjslcHV9lChoBmgJaA9DCJaUu89xcnFAlIaUUpRoFU2bAmgWR0CygZUc81XOdX2UKGgGaAloD0MIfVuwVBc4U0CUhpRSlGgVS8doFkdAsoIG/+Kjz3V9lChoBmgJaA9DCEbqPZWTFnFAlIaUUpRoFUvsaBZHQLKCBmapgkV1fZQoaAZoCWgPQwj2tpkKcZ9wQJSGlFKUaBVL6WgWR0CygiknLJS0dX2UKGgGaAloD0MIOQmlLwSBcECUhpRSlGgVTSUBaBZHQLKCfCqIacZ1fZQoaAZoCWgPQwh6xOi5hWBKQJSGlFKUaBVLt2gWR0CygpdoSL62dX2UKGgGaAloD0MI1XWopqTkbUCUhpRSlGgVTQQBaBZHQLKDO1Aqur91fZQoaAZoCWgPQwjXv+szZyhxQJSGlFKUaBVNLQJoFkdAsoNcSPEKmnV9lChoBmgJaA9DCFxZorNMtG1AlIaUUpRoFU0XAWgWR0Cyg3uHaewtdX2UKGgGaAloD0MICJRNucJGbkCUhpRSlGgVTZwBaBZHQLKEFv9tMwl1fZQoaAZoCWgPQwjKF7SQAOBtQJSGlFKUaBVL62gWR0CyhDC0rsjWdX2UKGgGaAloD0MIwTv59JiHc0CUhpRSlGgVTYUBaBZHQLKEb2hIvrZ1fZQoaAZoCWgPQwhPkxlvaw5yQJSGlFKUaBVNtAFoFkdAsoSOn4wh4nV9lChoBmgJaA9DCFiut83Uw3FAlIaUUpRoFUvbaBZHQLKEmTVDrqt1fZQoaAZoCWgPQwj4b16ceDBuQJSGlFKUaBVNHgFoFkdAsoTKhg3Lm3V9lChoBmgJaA9DCJ5EhH8RVnJAlIaUUpRoFU1kAWgWR0CyhNMC5mROdX2UKGgGaAloD0MIbF9AL9wXRkCUhpRSlGgVS7JoFkdAsoTcq5LAYnV9lChoBmgJaA9DCL2MYrnlenFAlIaUUpRoFU0gAWgWR0CyhPt83MpxdX2UKGgGaAloD0MI46WbxKAac0CUhpRSlGgVTQUBaBZHQLKFIkZ75VR1fZQoaAZoCWgPQwjNlNbfkt9wQJSGlFKUaBVNSAFoFkdAsoU2ADq4Y3V9lChoBmgJaA9DCLzK2qY493FAlIaUUpRoFU1UAWgWR0Cyhi9J8OTadX2UKGgGaAloD0MIhV5/El9vcUCUhpRSlGgVTeACaBZHQLKGTVdHDrJ1fZQoaAZoCWgPQwh9ryE4bmlyQJSGlFKUaBVNdAFoFkdAsoZihDgIhXV9lChoBmgJaA9DCCUEq+pl829AlIaUUpRoFU26AWgWR0CyhnAjyFwldX2UKGgGaAloD0MI3uaNk4KtcUCUhpRSlGgVS/9oFkdAsoakBp5/snV9lChoBmgJaA9DCE7yI35FBHBAlIaUUpRoFU1dAWgWR0CyhqlgH/tIdX2UKGgGaAloD0MISUvl7chzcECUhpRSlGgVTV8BaBZHQLKGzxbjcVR1fZQoaAZoCWgPQwiy1eWUgKtuQJSGlFKUaBVNsQFoFkdAsoc1DE3sHHV9lChoBmgJaA9DCPOv5ZVrInBAlIaUUpRoFU3MAWgWR0Cyh02UfPondX2UKGgGaAloD0MI/TOD+MAVcUCUhpRSlGgVTYsBaBZHQLKHYYF7laN1fZQoaAZoCWgPQwi7K7tg8FpkQJSGlFKUaBVN6ANoFkdAsodzwqiGnHV9lChoBmgJaA9DCHgnnx4b/3BAlIaUUpRoFU3XAWgWR0Cyh/OR1X/6dX2UKGgGaAloD0MIsf1kjI9ycUCUhpRSlGgVTTMBaBZHQLKIbBNEgGN1fZQoaAZoCWgPQwjnOo201BxwQJSGlFKUaBVNrQFoFkdAsohwkE9t/HV9lChoBmgJaA9DCGTNyCD3bG9AlIaUUpRoFUv1aBZHQLKIoeq7yx11fZQoaAZoCWgPQwg5DOavEPNtQJSGlFKUaBVNlwFoFkdAsojOii7Ci3V9lChoBmgJaA9DCILjMm5quHJAlIaUUpRoFUvmaBZHQLKJDH4XXRR1fZQoaAZoCWgPQwjDEaRS7OBtQJSGlFKUaBVNDQFoFkdAsolKAYpDu3V9lChoBmgJaA9DCHTsoBLXpHBAlIaUUpRoFU0TAWgWR0CyiWzu0CzUdX2UKGgGaAloD0MICObo8ftAb0CUhpRSlGgVTS4BaBZHQLKJmQqI7/51fZQoaAZoCWgPQwg/rDdqBdZjQJSGlFKUaBVN6ANoFkdAsommGmDUVnV9lChoBmgJaA9DCBueXimLknJAlIaUUpRoFU0pAWgWR0Cyib4n4O+adX2UKGgGaAloD0MIDMnJxK1kSECUhpRSlGgVS6doFkdAsooM0EX+EXV9lChoBmgJaA9DCB/XhorxfW1AlIaUUpRoFUvwaBZHQLKKOmeUY9B1fZQoaAZoCWgPQwhNnx1wnT9yQJSGlFKUaBVNdAFoFkdAsopLtRekYXV9lChoBmgJaA9DCPkP6bcv6W9AlIaUUpRoFUv2aBZHQLKKzM1jy4F1fZQoaAZoCWgPQwhLWBtj57pwQJSGlFKUaBVL+mgWR0CyiuNfG+9KdX2UKGgGaAloD0MIBrzMsJF7cECUhpRSlGgVTR0BaBZHQLKLN6zE74l1fZQoaAZoCWgPQwiEfqZed2pzQJSGlFKUaBVNHAFoFkdAsotAVymygXV9lChoBmgJaA9DCPSMfcnGYHJAlIaUUpRoFU1EAmgWR0Cyi5SnYQJ5dX2UKGgGaAloD0MIVvFG5hGkckCUhpRSlGgVTcABaBZHQLKL+cBU70Z1fZQoaAZoCWgPQwiZSj/hbAlxQJSGlFKUaBVL1mgWR0CyjH2uDBdldX2UKGgGaAloD0MIZqGd02xbckCUhpRSlGgVTTABaBZHQLKMiB6a9bp1fZQoaAZoCWgPQwjBi76CNDdLQJSGlFKUaBVLrGgWR0CyjJErkKeDdX2UKGgGaAloD0MIFk1nJwMhb0CUhpRSlGgVS/5oFkdAso0TqgRK6HV9lChoBmgJaA9DCOvFUE40hW5AlIaUUpRoFU0jAWgWR0CyjZTDKoycdX2UKGgGaAloD0MITUnW4ejackCUhpRSlGgVTQwBaBZHQLKNzg8r7O51fZQoaAZoCWgPQwhWnGotTMxxQJSGlFKUaBVN9wFoFkdAso3OgM+eOHV9lChoBmgJaA9DCE+WWu/3UHJAlIaUUpRoFU1yAWgWR0CyjfkJSiuddX2UKGgGaAloD0MIi/uPTIfmSkCUhpRSlGgVS65oFkdAso52PHT7VXV9lChoBmgJaA9DCHhDGhX4cnNAlIaUUpRoFU0nAWgWR0CyjpRPGhmHdX2UKGgGaAloD0MIxttKr03WbUCUhpRSlGgVS+1oFkdAso6ecnVoYnV9lChoBmgJaA9DCCv2l91TIHJAlIaUUpRoFU0RAWgWR0CyjqhIjGDMdX2UKGgGaAloD0MINXnKanoFckCUhpRSlGgVTcQCaBZHQLKOu0ALiMp1fZQoaAZoCWgPQwjx9iAEZAxxQJSGlFKUaBVNngJoFkdAso7K2mYShHV9lChoBmgJaA9DCE/ltKfkDXFAlIaUUpRoFU1mAmgWR0CyjtPMjeKsdX2UKGgGaAloD0MIG4S53cuRcECUhpRSlGgVTSEBaBZHQLKO20Ltu1p1fZQoaAZoCWgPQwhZh6OrdDlyQJSGlFKUaBVNJQFoFkdAso9Fc9nscHV9lChoBmgJaA9DCFDDt7CuGnFAlIaUUpRoFU25AmgWR0Cyj3AVO9FndX2UKGgGaAloD0MIInAk0CBIcECUhpRSlGgVTWUBaBZHQLKPrT5wfhd1fZQoaAZoCWgPQwhxBRTq6aNyQJSGlFKUaBVNOgFoFkdAso/AZR8+inV9lChoBmgJaA9DCPt1pztPT2NAlIaUUpRoFU3oA2gWR0Cyj9ENKAavdX2UKGgGaAloD0MI1hnfF9dcckCUhpRSlGgVTSoBaBZHQLKQBjtXxON1fZQoaAZoCWgPQwjMXradtoROwJSGlFKUaBVLfGgWR0CykMk5QxetdX2UKGgGaAloD0MINxyWBr7mcECUhpRSlGgVTUkCaBZHQLKQ2+wTufF1fZQoaAZoCWgPQwhwd9Zu+4RyQJSGlFKUaBVNBQJoFkdAspDkbNr0rnV9lChoBmgJaA9DCPAyw0ZZGUFAlIaUUpRoFUvRaBZHQLKSNehf0Ep1fZQoaAZoCWgPQwhvfy4asndwQJSGlFKUaBVNLQFoFkdAspI7Jp35e3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 8, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:1a5568045b618ca0f5163ed557ade39d2605adc1d226fb5d6fa6d523bfca8f97
3
- size 147210
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a5debcd2379a683e3548a3ab340c6bab700581c154d4a01b2fd0600c0c01ff40
3
+ size 147883
ppo-LunarLander-v2/data CHANGED
@@ -4,19 +4,19 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3d970b95e0>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3d970b9670>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3d970b9700>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3d970b9790>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7f3d970b9820>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7f3d970b98b0>",
13
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3d970b9940>",
14
- "_predict": "<function ActorCriticPolicy._predict at 0x7f3d970b99d0>",
15
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3d970b9a60>",
16
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3d970b9af0>",
17
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3d970b9b80>",
18
  "__abstractmethods__": "frozenset()",
19
- "_abc_impl": "<_abc_data object at 0x7f3d970afed0>"
20
  },
21
  "verbose": 1,
22
  "policy_kwargs": {},
@@ -41,49 +41,49 @@
41
  "dtype": "int64",
42
  "_np_random": null
43
  },
44
- "n_envs": 16,
45
- "num_timesteps": 1212416,
46
- "_total_timesteps": 1200000,
47
  "_num_timesteps_at_start": 0,
48
  "seed": null,
49
  "action_noise": null,
50
- "start_time": 1670757826039568267,
51
- "learning_rate": 0.0005,
52
  "tensorboard_log": null,
53
  "lr_schedule": {
54
  ":type:": "<class 'function'>",
55
- ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/QGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
  },
57
  "_last_obs": {
58
  ":type:": "<class 'numpy.ndarray'>",
59
- ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEDIjz3eF6w9Sse1vRl0eb5Ulum8PTlSOwAAAAAAAAAAwJygPcNZdbp5/pm7Fykvt3B+TLpnNLI6AACAPwAAgD8z0/67OaagPi6hJr06r46+O+z/OwuLHz0AAAAAAAAAAIDuWr2P5ly6/DI3vKsNSza5Hwy5uiK7tQAAgD8AAIA/zQbWvCkYKboqZCc2zUbmr+MPlDkiikC1AACAPwAAgD9mIIk+s+IpP6FRL74jpH++5cQpPUwhNr4AAAAAAAAAAOZZED1P8VY/RyGgO20KxL5/zts81SbqvAAAAAAAAAAAmqmvPCmMTrrOrAm8JPJdteBSgrtFicY0AACAPwAAgD8A9GO94+kTP0UOXzxedZS+rn3AvOOeFL0AAAAAAAAAAGa2YjuPYl+67k+EOnfCWbahP4G7v9mZuQAAgD8AAIA/aimtPsi/Kj8ex4C9FmLGvldSUj49Lfm9AAAAAAAAAABA0V8+N59sP7jKu7wSWay+lCLfPUs3Yr0AAAAAAAAAAM1Mq7spKEy6heQ9uLrbGrPShZW7FhdgNwAAgD8AAIA/5vpXPfa4HbrSNKI7M7rttaSjoLvou766AACAPwAAgD/N2UW9j94xus6VjLoiBVI0XDipuziwozkAAIA/AACAP7Pn8j1SwrI6jwLLvTKadrzFnK484mVbvQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
  },
61
  "_last_episode_starts": {
62
  ":type:": "<class 'numpy.ndarray'>",
63
- ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
  },
65
  "_last_original_obs": null,
66
  "_episode_num": 0,
67
  "use_sde": false,
68
  "sde_sample_freq": -1,
69
- "_current_progress_remaining": -0.010346666666666726,
70
  "ep_info_buffer": {
71
  ":type:": "<class 'collections.deque'>",
72
- ":serialized:": "gAWVehAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIVkRN9PkmZkCUhpRSlIwBbJRN6AOMAXSUR0ClLKj7qIJrdX2UKGgGaAloD0MI34lZL4byY0CUhpRSlGgVTegDaBZHQKUs1oNd7fJ1fZQoaAZoCWgPQwioVfSH5qpmQJSGlFKUaBVN6ANoFkdApTEp+z+m33V9lChoBmgJaA9DCINqgxNR/GRAlIaUUpRoFU3oA2gWR0ClMvCzTnaGdX2UKGgGaAloD0MIFeC7zZvwYkCUhpRSlGgVTegDaBZHQKUzD/SYw7F1fZQoaAZoCWgPQwiVfsLZLeNoQJSGlFKUaBVN6ANoFkdApTf0TviLl3V9lChoBmgJaA9DCFvPEI7ZfWFAlIaUUpRoFU3oA2gWR0ClOPBisny/dX2UKGgGaAloD0MI0Vj7O9tDYkCUhpRSlGgVTegDaBZHQKU70PJ7sv91fZQoaAZoCWgPQwjyYIvdPlJiQJSGlFKUaBVN6ANoFkdApTyr8cdYGXV9lChoBmgJaA9DCLIQHQLHvmJAlIaUUpRoFU3oA2gWR0ClPdbzbvgFdX2UKGgGaAloD0MID3wMVpyOZUCUhpRSlGgVTegDaBZHQKVI+HGCI1t1fZQoaAZoCWgPQwgPK9zyEaViQJSGlFKUaBVN6ANoFkdApUki0hNdq3V9lChoBmgJaA9DCM2ueyuSVWRAlIaUUpRoFU3oA2gWR0ClSX6/IsAedX2UKGgGaAloD0MIu/HuyFjQYkCUhpRSlGgVTegDaBZHQKVJunP3SKF1fZQoaAZoCWgPQwjSGoNOCIVhQJSGlFKUaBVN6ANoFkdApUzBuVHFxXV9lChoBmgJaA9DCLQdU3dlC09AlIaUUpRoFU0BAWgWR0ClTWslTm4idX2UKGgGaAloD0MILnO6LCZ2N0CUhpRSlGgVS95oFkdApU+aY3Ns33V9lChoBmgJaA9DCJZ4QNmUTUJAlIaUUpRoFUvaaBZHQKVTHsj3VTd1fZQoaAZoCWgPQwi9VkJ3SctjQJSGlFKUaBVN6ANoFkdApVOxouf29XV9lChoBmgJaA9DCE1nJ4Mj9mFAlIaUUpRoFU3oA2gWR0ClU+xkd3jddX2UKGgGaAloD0MIwoTRrGxjYUCUhpRSlGgVTegDaBZHQKVUFcB2fTV1fZQoaAZoCWgPQwiorKbriU1RQJSGlFKUaBVL52gWR0ClVDu9OARTdX2UKGgGaAloD0MIN1MhHomBRUCUhpRSlGgVS+ZoFkdApVYnHT7VKHV9lChoBmgJaA9DCBn+0w2UiGFAlIaUUpRoFU3oA2gWR0ClV6xvWH1wdX2UKGgGaAloD0MIKLnDJrKbY0CUhpRSlGgVTegDaBZHQKVZJmlImPZ1fZQoaAZoCWgPQwisdHedjbtgQJSGlFKUaBVN6ANoFkdApVk/x+az/3V9lChoBmgJaA9DCDZ0sz9Q91FAlIaUUpRoFUvFaBZHQKVbF71Iy0t1fZQoaAZoCWgPQwiPOc/Yl9xjQJSGlFKUaBVN6ANoFkdApV15hH9WIXV9lChoBmgJaA9DCMYWghwUWmRAlIaUUpRoFU3oA2gWR0ClXk2912aEdX2UKGgGaAloD0MI1GTG20oGYkCUhpRSlGgVTegDaBZHQKVg4Lb5/LF1fZQoaAZoCWgPQwi86gHzEIhlQJSGlFKUaBVN6ANoFkdApWLCy2QXAXV9lChoBmgJaA9DCI8c6QwMj2RAlIaUUpRoFU3oA2gWR0ClZBlxOtW/dX2UKGgGaAloD0MIq8spATHpX0CUhpRSlGgVTegDaBZHQKVt1N9H+ZR1fZQoaAZoCWgPQwjdJXFWRKFRQJSGlFKUaBVL1WgWR0Clbep2ll9SdX2UKGgGaAloD0MIMbQ6OUOQYUCUhpRSlGgVTegDaBZHQKVuNGYKIBR1fZQoaAZoCWgPQwgJ3SVxVlteQJSGlFKUaBVN6ANoFkdApXinepGWlnV9lChoBmgJaA9DCCHNWDQdOmBAlIaUUpRoFU3oA2gWR0CleUHI6r/9dX2UKGgGaAloD0MIatyb37COZECUhpRSlGgVTegDaBZHQKV5h4dIXj51fZQoaAZoCWgPQwgi4uZUMrdlQJSGlFKUaBVN6ANoFkdApXm2qgh8pnV9lChoBmgJaA9DCA98DFYcGmJAlIaUUpRoFU3oA2gWR0CleeGSpzcRdX2UKGgGaAloD0MIJa5jXPFxZ0CUhpRSlGgVTegDaBZHQKV95dqtYCB1fZQoaAZoCWgPQwhrRga5ix5kQJSGlFKUaBVN6ANoFkdApX+i8UVSGnV9lChoBmgJaA9DCFYPmIfMb2FAlIaUUpRoFU3oA2gWR0Clf8Km8/UwdX2UKGgGaAloD0MIYMsr19tHZECUhpRSlGgVTegDaBZHQKWCCHqu8sd1fZQoaAZoCWgPQwhEUDV6NWFdQJSGlFKUaBVN6ANoFkdApYUs+NcW03V9lChoBmgJaA9DCLmrV5FRW2RAlIaUUpRoFU3oA2gWR0CliYW4NI9UdX2UKGgGaAloD0MIRDUlWYekYkCUhpRSlGgVTegDaBZHQKWL7qj8DSx1fZQoaAZoCWgPQwjZlZaRelJiQJSGlFKUaBVN6ANoFkdApY2KwMYuTXV9lChoBmgJaA9DCLn8h/TbG2VAlIaUUpRoFU3oA2gWR0CljcLl/6O6dX2UKGgGaAloD0MIigYpeAosZECUhpRSlGgVTegDaBZHQKWN332VVxV1fZQoaAZoCWgPQwgwgPChRH9lQJSGlFKUaBVN6ANoFkdApY4xmK64D3V9lChoBmgJaA9DCJiiXBq/FWJAlIaUUpRoFU3oA2gWR0Clouwqqfe2dX2UKGgGaAloD0MIFJM3wMz4ZUCUhpRSlGgVTegDaBZHQKWjlleWv8t1fZQoaAZoCWgPQwgu4jsx65JlQJSGlFKUaBVN6ANoFkdApaPgEr5IpnV9lChoBmgJaA9DCFzLZDieDWFAlIaUUpRoFU3oA2gWR0ClpBEBsANodX2UKGgGaAloD0MIzR5oBYZcYUCUhpRSlGgVTegDaBZHQKWkQA9V3ll1fZQoaAZoCWgPQwgxW7IqwllkQJSGlFKUaBVN6ANoFkdApafsz0pVj3V9lChoBmgJaA9DCLU3+MJk22FAlIaUUpRoFU3oA2gWR0ClqXoTfzjFdX2UKGgGaAloD0MIbTgsDXzfYECUhpRSlGgVTegDaBZHQKWplTEzfrN1fZQoaAZoCWgPQwjThy6obzhhQJSGlFKUaBVN6ANoFkdApauU4PwuunV9lChoBmgJaA9DCNIcWflllGNAlIaUUpRoFU3oA2gWR0ClrfIFNcnmdX2UKGgGaAloD0MI/rrTnaeTZ0CUhpRSlGgVTegDaBZHQKWxlrv9cbB1fZQoaAZoCWgPQwhMbamDPJxkQJSGlFKUaBVN6ANoFkdApbOCXOW0JHV9lChoBmgJaA9DCIO/X8yW7AxAlIaUUpRoFUvjaBZHQKW0mTW5H3F1fZQoaAZoCWgPQwjZs+cyNfxgQJSGlFKUaBVN6ANoFkdApbTVBIFvAHV9lChoBmgJaA9DCFotsMdESGFAlIaUUpRoFU3oA2gWR0CltPzLwF1TdX2UKGgGaAloD0MI5sk1BbIaZkCUhpRSlGgVTegDaBZHQKW1EB+Wnj11fZQoaAZoCWgPQwiJfQIoxqVkQJSGlFKUaBVN6ANoFkdApbVO/+Kjz3V9lChoBmgJaA9DCNYe9kKBa2hAlIaUUpRoFU3oA2gWR0ClyQFhG6PKdX2UKGgGaAloD0MIUaT7OYU4ZUCUhpRSlGgVTegDaBZHQKXJpHJ9y951fZQoaAZoCWgPQwjWHYttUkFjQJSGlFKUaBVN6ANoFkdApcnrDsMRYnV9lChoBmgJaA9DCLezrzxIcmBAlIaUUpRoFU3oA2gWR0Clyhv/io87dX2UKGgGaAloD0MI5bSn5JwqYkCUhpRSlGgVTegDaBZHQKXKRvDP4VR1fZQoaAZoCWgPQwjaHOc24WVkQJSGlFKUaBVN6ANoFkdApc5HjbSJCXV9lChoBmgJaA9DCNXQBmCDm2BAlIaUUpRoFU3oA2gWR0Clz/htk4FSdX2UKGgGaAloD0MIOsyXF2CMZkCUhpRSlGgVTegDaBZHQKXQE6aLGaR1fZQoaAZoCWgPQwh9JCU9jK1gQJSGlFKUaBVN6ANoFkdApdIQz1schnV9lChoBmgJaA9DCLZMhuN5bmZAlIaUUpRoFU3oA2gWR0Cl1/4AbQ1KdX2UKGgGaAloD0MISbpm8k13YkCUhpRSlGgVTegDaBZHQKXZ8wM6RyR1fZQoaAZoCWgPQwgzb9V1qHBjQJSGlFKUaBVN6ANoFkdApdsJbOeJ53V9lChoBmgJaA9DCAqgGFmyr2JAlIaUUpRoFU3oA2gWR0Cl20HHmzSkdX2UKGgGaAloD0MIOPbsuUytZUCUhpRSlGgVTegDaBZHQKXbaTNdJJ51fZQoaAZoCWgPQwj8VuvE5Q1eQJSGlFKUaBVN6ANoFkdApdt8TlDF63V9lChoBmgJaA9DCHkkXp7Ox2NAlIaUUpRoFU3oA2gWR0Cl28AYxcmjdX2UKGgGaAloD0MIfNEeLyT5YUCUhpRSlGgVTegDaBZHQKXuNMdtEXt1fZQoaAZoCWgPQwi2uTE9YeNfQJSGlFKUaBVN6ANoFkdApe6/HtF8X3V9lChoBmgJaA9DCIWZtn9lOmNAlIaUUpRoFU3oA2gWR0Cl7virksBidX2UKGgGaAloD0MI3UWYolyNY0CUhpRSlGgVTegDaBZHQKXvIhtcfNl1fZQoaAZoCWgPQwjFAIkm0K1jQJSGlFKUaBVN6ANoFkdApe9E8kleGHV9lChoBmgJaA9DCKPNcW6TZWdAlIaUUpRoFU3oA2gWR0Cl8qOFxn3+dX2UKGgGaAloD0MI4jrGFZcYZ0CUhpRSlGgVTegDaBZHQKX0evg3tKJ1fZQoaAZoCWgPQwggJAuYwPdgQJSGlFKUaBVN6ANoFkdApfSf9UCJXXV9lChoBmgJaA9DCDNuaqB5b2FAlIaUUpRoFU3oA2gWR0Cl9weHSF4+dX2UKGgGaAloD0MI/YNIhhwIYECUhpRSlGgVTegDaBZHQKX9TijtXxR1fZQoaAZoCWgPQwgXtmYrL1NmQJSGlFKUaBVN6ANoFkdApf8NhsqJ/HV9lChoBmgJaA9DCFOWIY51jGhAlIaUUpRoFU3oA2gWR0Cl//aDwpfAdX2UKGgGaAloD0MIufscH614ZUCUhpRSlGgVTegDaBZHQKYAJnV5KOF1fZQoaAZoCWgPQwjvchHfCTJnQJSGlFKUaBVN6ANoFkdApgBIgX/HYHV9lChoBmgJaA9DCKpE2VvKamVAlIaUUpRoFU3oA2gWR0CmAFsHjZL7dX2UKGgGaAloD0MIPusaLQd1YkCUhpRSlGgVTegDaBZHQKYAlKGL1mJ1ZS4="
73
  },
74
  "ep_success_buffer": {
75
  ":type:": "<class 'collections.deque'>",
76
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
  },
78
- "_n_updates": 296,
79
- "n_steps": 1024,
80
  "gamma": 0.999,
81
  "gae_lambda": 0.98,
82
  "ent_coef": 0.01,
83
  "vf_coef": 0.5,
84
  "max_grad_norm": 0.5,
85
- "batch_size": 64,
86
- "n_epochs": 4,
87
  "clip_range": {
88
  ":type:": "<class 'function'>",
89
  ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd6f6268820>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd6f62688b0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd6f6268940>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd6f62689d0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fd6f6268a60>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fd6f6268af0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd6f6268b80>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fd6f6268c10>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd6f6268ca0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd6f6268d30>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd6f6268dc0>",
18
  "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7fd6f62691e0>"
20
  },
21
  "verbose": 1,
22
  "policy_kwargs": {},
 
41
  "dtype": "int64",
42
  "_np_random": null
43
  },
44
+ "n_envs": 32,
45
+ "num_timesteps": 2031616,
46
+ "_total_timesteps": 2000000,
47
  "_num_timesteps_at_start": 0,
48
  "seed": null,
49
  "action_noise": null,
50
+ "start_time": 1670854025827987854,
51
+ "learning_rate": 0.0003,
52
  "tensorboard_log": null,
53
  "lr_schedule": {
54
  ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
  },
57
  "_last_obs": {
58
  ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAANr7h71Iy5S6y2TSOPNRxTPozz66pUjztwAAgD8AAIA/ANYyPEh/gLpiqCi6AHEltbRGrbnd+0Q5AACAPwAAgD9NBmS9SLeNupQxLbhz4CKzwZtSunawSDcAAIA/AACAPzOItby3rBg+wL73vVLZj76YhH28mJwZvQAAAAAAAAAAMxU4POHcrbpKVI859WKJNGq0ZblSaKO4AACAPwAAgD/NB9W8owoXPQGXlr4cOF6+aQPuvCkySz0AAAAAAAAAAGZ63bzhYJO6MhdKufen17Npubm5uH9oOAAAgD8AAIA/zcw9uSloLbpuwCA4AqsyM5H1kjuwlj63AACAPwAAgD/NfDo7BQzhPgd+Jb2JNcC+iZenvLGoij0AAAAAAAAAADNXjL0koZQ//SONvuZVEr80WtK9yWuavQAAAAAAAAAADdHcvSlkN7rKe3A7ZIRhOBY1nbt23xS6AACAPwAAAAAAjwu9VxmWP/go871tdw6/kY+PvSo1qr0AAAAAAAAAABp9C73hdKm6/D2POeY6izS2ZI65aqijuAAAgD8AAIA/XSNVvvsCz7yNZWy7cevmufwbOj5WLJs6AACAPwAAgD9gA4Q+BVHnPKfNJTvvY+U5ZXx8PnUoaroAAIA/AAAAAGANaT6ZqfE+5Sgqv84gz750SJs+QG+5vgAAAAAAAAAAwJyXvUgPh7qrbSA4wIYCM8a9TTpPBjq3AAAAAAAAgD8z83E86f8gvAVarjpeI7I8vNCLPTHVkb0AAIA/AACAP8A5lj1XegI+30iUvpPJab5snUu9qwqVPAAAAAAAAAAAANHTPIM+JD0K7GY8LwuMvuiygz1ULUU8AAAAAAAAAAAA2iO8j7JIulOyX7lm5p8x7swbu7IIgjgAAIA/AACAP5qj0DwKrGe7I01UvIq6YTzMG7K84sxDPQAAgD8AAIA/wy2NPp3Iqj7NaWS+lJmXvj5xHj5qKiS9AAAAAAAAAABavOS9ro+QutzTk7oaXJK2yWUbO7PSpzkAAIA/AAAAANoY6b2PRkW6S61oO4DGQbSROUC6ujrLswAAgD8AAIA/s2e/vcO1fLrssyo8hLW6thwDBjvuNLG1AAAAAAAAgD+AHhu9KSAJulpI5zoErCm1tUSKu+YMCLoAAIA/AACAP00jwr2Pnla66cA3uVW5gzICvMu61VpUOAAAgD8AAAAApiyFveFoqbqdSZW1kyKUsC4gnDopxak0AACAPwAAgD+Nja699rgRuqg1WDw18wE180qiOx1M3TMAAAAAAAAAAO1QEb5puXq88t11vuHmXjtaxLU9NtSDvAAAgD8AAIA/ZlG9veF4nLoY5uy3Dx7jsuaymbq6jwg3AAAAAAAAgD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"
60
  },
61
  "_last_episode_starts": {
62
  ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="
64
  },
65
  "_last_original_obs": null,
66
  "_episode_num": 0,
67
  "use_sde": false,
68
  "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
  "ep_info_buffer": {
71
  ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVZBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIO44fKk2EcECUhpRSlIwBbJRL+4wBdJRHQLJ+cnBLwnZ1fZQoaAZoCWgPQwgmjjwQGc9xQJSGlFKUaBVNUQFoFkdAsn7ienQ6ZHV9lChoBmgJaA9DCILlCBnIc0tAlIaUUpRoFUusaBZHQLJ/MQV9F4N1fZQoaAZoCWgPQwi5quy74tVwQJSGlFKUaBVNsAFoFkdAsn8120Re1XV9lChoBmgJaA9DCOpae58qJ29AlIaUUpRoFU1GAWgWR0CyfzsHGCI2dX2UKGgGaAloD0MIIAiQoaMncUCUhpRSlGgVTYABaBZHQLJ/Pv/BFd91fZQoaAZoCWgPQwivzjEgO4xyQJSGlFKUaBVNSwJoFkdAsn90q/dqL3V9lChoBmgJaA9DCJXW3xLA7XBAlIaUUpRoFU22AWgWR0Cyf92SpzcRdX2UKGgGaAloD0MIY+/FF62AcUCUhpRSlGgVTRABaBZHQLKAFqRU3n91fZQoaAZoCWgPQwg57//jBEpzQJSGlFKUaBVL4WgWR0CygClEVnEmdX2UKGgGaAloD0MIP+PCgdDtcECUhpRSlGgVTQQBaBZHQLKAbv5xiod1fZQoaAZoCWgPQwj4+lqXGppsQJSGlFKUaBVNCAFoFkdAsoB3iWE9MnV9lChoBmgJaA9DCJV/La/cI3FAlIaUUpRoFU0dAWgWR0CygJcAeaKDdX2UKGgGaAloD0MIliAjoMKJQMCUhpRSlGgVS6BoFkdAsoCbPZ7HAHV9lChoBmgJaA9DCA8pBkh04HFAlIaUUpRoFU2wAWgWR0CygKcd1dPddX2UKGgGaAloD0MIhnR4CGNEcECUhpRSlGgVTdsBaBZHQLKAs5ooNNJ1fZQoaAZoCWgPQwiPcjCbQGFxQJSGlFKUaBVNCgFoFkdAsoDw6YE4enV9lChoBmgJaA9DCGlVSzrKUHJAlIaUUpRoFU0RAWgWR0CygSN3r2QGdX2UKGgGaAloD0MI/+px32oQc0CUhpRSlGgVS/FoFkdAsoEyGCZnc3V9lChoBmgJaA9DCLABEeJKt21AlIaUUpRoFUv/aBZHQLKBNjBEa2p1fZQoaAZoCWgPQwg5s12hDwZxQJSGlFKUaBVL/mgWR0CygUQhOgxrdX2UKGgGaAloD0MI42w6ArhdckCUhpRSlGgVS+5oFkdAsoFONjslcHV9lChoBmgJaA9DCJaUu89xcnFAlIaUUpRoFU2bAmgWR0CygZUc81XOdX2UKGgGaAloD0MIfVuwVBc4U0CUhpRSlGgVS8doFkdAsoIG/+Kjz3V9lChoBmgJaA9DCEbqPZWTFnFAlIaUUpRoFUvsaBZHQLKCBmapgkV1fZQoaAZoCWgPQwj2tpkKcZ9wQJSGlFKUaBVL6WgWR0CygiknLJS0dX2UKGgGaAloD0MIOQmlLwSBcECUhpRSlGgVTSUBaBZHQLKCfCqIacZ1fZQoaAZoCWgPQwh6xOi5hWBKQJSGlFKUaBVLt2gWR0CygpdoSL62dX2UKGgGaAloD0MI1XWopqTkbUCUhpRSlGgVTQQBaBZHQLKDO1Aqur91fZQoaAZoCWgPQwjXv+szZyhxQJSGlFKUaBVNLQJoFkdAsoNcSPEKmnV9lChoBmgJaA9DCFxZorNMtG1AlIaUUpRoFU0XAWgWR0Cyg3uHaewtdX2UKGgGaAloD0MICJRNucJGbkCUhpRSlGgVTZwBaBZHQLKEFv9tMwl1fZQoaAZoCWgPQwjKF7SQAOBtQJSGlFKUaBVL62gWR0CyhDC0rsjWdX2UKGgGaAloD0MIwTv59JiHc0CUhpRSlGgVTYUBaBZHQLKEb2hIvrZ1fZQoaAZoCWgPQwhPkxlvaw5yQJSGlFKUaBVNtAFoFkdAsoSOn4wh4nV9lChoBmgJaA9DCFiut83Uw3FAlIaUUpRoFUvbaBZHQLKEmTVDrqt1fZQoaAZoCWgPQwj4b16ceDBuQJSGlFKUaBVNHgFoFkdAsoTKhg3Lm3V9lChoBmgJaA9DCJ5EhH8RVnJAlIaUUpRoFU1kAWgWR0CyhNMC5mROdX2UKGgGaAloD0MIbF9AL9wXRkCUhpRSlGgVS7JoFkdAsoTcq5LAYnV9lChoBmgJaA9DCL2MYrnlenFAlIaUUpRoFU0gAWgWR0CyhPt83MpxdX2UKGgGaAloD0MI46WbxKAac0CUhpRSlGgVTQUBaBZHQLKFIkZ75VR1fZQoaAZoCWgPQwjNlNbfkt9wQJSGlFKUaBVNSAFoFkdAsoU2ADq4Y3V9lChoBmgJaA9DCLzK2qY493FAlIaUUpRoFU1UAWgWR0Cyhi9J8OTadX2UKGgGaAloD0MIhV5/El9vcUCUhpRSlGgVTeACaBZHQLKGTVdHDrJ1fZQoaAZoCWgPQwh9ryE4bmlyQJSGlFKUaBVNdAFoFkdAsoZihDgIhXV9lChoBmgJaA9DCCUEq+pl829AlIaUUpRoFU26AWgWR0CyhnAjyFwldX2UKGgGaAloD0MI3uaNk4KtcUCUhpRSlGgVS/9oFkdAsoakBp5/snV9lChoBmgJaA9DCE7yI35FBHBAlIaUUpRoFU1dAWgWR0CyhqlgH/tIdX2UKGgGaAloD0MISUvl7chzcECUhpRSlGgVTV8BaBZHQLKGzxbjcVR1fZQoaAZoCWgPQwiy1eWUgKtuQJSGlFKUaBVNsQFoFkdAsoc1DE3sHHV9lChoBmgJaA9DCPOv5ZVrInBAlIaUUpRoFU3MAWgWR0Cyh02UfPondX2UKGgGaAloD0MI/TOD+MAVcUCUhpRSlGgVTYsBaBZHQLKHYYF7laN1fZQoaAZoCWgPQwi7K7tg8FpkQJSGlFKUaBVN6ANoFkdAsodzwqiGnHV9lChoBmgJaA9DCHgnnx4b/3BAlIaUUpRoFU3XAWgWR0Cyh/OR1X/6dX2UKGgGaAloD0MIsf1kjI9ycUCUhpRSlGgVTTMBaBZHQLKIbBNEgGN1fZQoaAZoCWgPQwjnOo201BxwQJSGlFKUaBVNrQFoFkdAsohwkE9t/HV9lChoBmgJaA9DCGTNyCD3bG9AlIaUUpRoFUv1aBZHQLKIoeq7yx11fZQoaAZoCWgPQwg5DOavEPNtQJSGlFKUaBVNlwFoFkdAsojOii7Ci3V9lChoBmgJaA9DCILjMm5quHJAlIaUUpRoFUvmaBZHQLKJDH4XXRR1fZQoaAZoCWgPQwjDEaRS7OBtQJSGlFKUaBVNDQFoFkdAsolKAYpDu3V9lChoBmgJaA9DCHTsoBLXpHBAlIaUUpRoFU0TAWgWR0CyiWzu0CzUdX2UKGgGaAloD0MICObo8ftAb0CUhpRSlGgVTS4BaBZHQLKJmQqI7/51fZQoaAZoCWgPQwg/rDdqBdZjQJSGlFKUaBVN6ANoFkdAsommGmDUVnV9lChoBmgJaA9DCBueXimLknJAlIaUUpRoFU0pAWgWR0Cyib4n4O+adX2UKGgGaAloD0MIDMnJxK1kSECUhpRSlGgVS6doFkdAsooM0EX+EXV9lChoBmgJaA9DCB/XhorxfW1AlIaUUpRoFUvwaBZHQLKKOmeUY9B1fZQoaAZoCWgPQwhNnx1wnT9yQJSGlFKUaBVNdAFoFkdAsopLtRekYXV9lChoBmgJaA9DCPkP6bcv6W9AlIaUUpRoFUv2aBZHQLKKzM1jy4F1fZQoaAZoCWgPQwhLWBtj57pwQJSGlFKUaBVL+mgWR0CyiuNfG+9KdX2UKGgGaAloD0MIBrzMsJF7cECUhpRSlGgVTR0BaBZHQLKLN6zE74l1fZQoaAZoCWgPQwiEfqZed2pzQJSGlFKUaBVNHAFoFkdAsotAVymygXV9lChoBmgJaA9DCPSMfcnGYHJAlIaUUpRoFU1EAmgWR0Cyi5SnYQJ5dX2UKGgGaAloD0MIVvFG5hGkckCUhpRSlGgVTcABaBZHQLKL+cBU70Z1fZQoaAZoCWgPQwiZSj/hbAlxQJSGlFKUaBVL1mgWR0CyjH2uDBdldX2UKGgGaAloD0MIZqGd02xbckCUhpRSlGgVTTABaBZHQLKMiB6a9bp1fZQoaAZoCWgPQwjBi76CNDdLQJSGlFKUaBVLrGgWR0CyjJErkKeDdX2UKGgGaAloD0MIFk1nJwMhb0CUhpRSlGgVS/5oFkdAso0TqgRK6HV9lChoBmgJaA9DCOvFUE40hW5AlIaUUpRoFU0jAWgWR0CyjZTDKoycdX2UKGgGaAloD0MITUnW4ejackCUhpRSlGgVTQwBaBZHQLKNzg8r7O51fZQoaAZoCWgPQwhWnGotTMxxQJSGlFKUaBVN9wFoFkdAso3OgM+eOHV9lChoBmgJaA9DCE+WWu/3UHJAlIaUUpRoFU1yAWgWR0CyjfkJSiuddX2UKGgGaAloD0MIi/uPTIfmSkCUhpRSlGgVS65oFkdAso52PHT7VXV9lChoBmgJaA9DCHhDGhX4cnNAlIaUUpRoFU0nAWgWR0CyjpRPGhmHdX2UKGgGaAloD0MIxttKr03WbUCUhpRSlGgVS+1oFkdAso6ecnVoYnV9lChoBmgJaA9DCCv2l91TIHJAlIaUUpRoFU0RAWgWR0CyjqhIjGDMdX2UKGgGaAloD0MINXnKanoFckCUhpRSlGgVTcQCaBZHQLKOu0ALiMp1fZQoaAZoCWgPQwjx9iAEZAxxQJSGlFKUaBVNngJoFkdAso7K2mYShHV9lChoBmgJaA9DCE/ltKfkDXFAlIaUUpRoFU1mAmgWR0CyjtPMjeKsdX2UKGgGaAloD0MIG4S53cuRcECUhpRSlGgVTSEBaBZHQLKO20Ltu1p1fZQoaAZoCWgPQwhZh6OrdDlyQJSGlFKUaBVNJQFoFkdAso9Fc9nscHV9lChoBmgJaA9DCFDDt7CuGnFAlIaUUpRoFU25AmgWR0Cyj3AVO9FndX2UKGgGaAloD0MIInAk0CBIcECUhpRSlGgVTWUBaBZHQLKPrT5wfhd1fZQoaAZoCWgPQwhxBRTq6aNyQJSGlFKUaBVNOgFoFkdAso/AZR8+inV9lChoBmgJaA9DCPt1pztPT2NAlIaUUpRoFU3oA2gWR0Cyj9ENKAavdX2UKGgGaAloD0MI1hnfF9dcckCUhpRSlGgVTSoBaBZHQLKQBjtXxON1fZQoaAZoCWgPQwjMXradtoROwJSGlFKUaBVLfGgWR0CykMk5QxetdX2UKGgGaAloD0MINxyWBr7mcECUhpRSlGgVTUkCaBZHQLKQ2+wTufF1fZQoaAZoCWgPQwhwd9Zu+4RyQJSGlFKUaBVNBQJoFkdAspDkbNr0rnV9lChoBmgJaA9DCPAyw0ZZGUFAlIaUUpRoFUvRaBZHQLKSNehf0Ep1fZQoaAZoCWgPQwhvfy4asndwQJSGlFKUaBVNLQFoFkdAspI7Jp35e3VlLg=="
73
  },
74
  "ep_success_buffer": {
75
  ":type:": "<class 'collections.deque'>",
76
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
  },
78
+ "_n_updates": 248,
79
+ "n_steps": 2048,
80
  "gamma": 0.999,
81
  "gae_lambda": 0.98,
82
  "ent_coef": 0.01,
83
  "vf_coef": 0.5,
84
  "max_grad_norm": 0.5,
85
+ "batch_size": 128,
86
+ "n_epochs": 8,
87
  "clip_range": {
88
  ":type:": "<class 'function'>",
89
  ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
ppo-LunarLander-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:ee2bfe0953896c34a239143c2bb8901e5b06b92d9786f6f6bacdaee90ef463e2
3
  size 87929
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:88dd3803aa6b1a78d066452cbde893231888a14c29b92b7527333917553d4463
3
  size 87929
ppo-LunarLander-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:ec12671ac7b11c1ee1bc291df9dcdadc33d56903a0d8a879f751483ce1f4fafb
3
  size 43201
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:72c76016d0460bf78d36d072350218a58bf930265741d14c1d233d774e691a8c
3
  size 43201
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 258.82242296126856, "std_reward": 21.57421907315003, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-11T11:47:37.485915"}
 
1
+ {"mean_reward": 279.46835422687013, "std_reward": 16.17827783293576, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-12T14:51:37.226676"}