Initial commit
Browse files- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1102.58 +/- 114.93
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:235917aa48ee18c32c313c5678561a101575ae71773adf277c5327fdbc8e6aab
|
3 |
+
size 129256
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f54bb534af0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f54bb534b80>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f54bb534c10>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f54bb534ca0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f54bb534d30>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f54bb534dc0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f54bb534e50>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f54bb534ee0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f54bb534f70>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f54bb538040>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f54bb5380d0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f54bb538160>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f54bb52dd20>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 2000000,
|
63 |
+
"_total_timesteps": 2000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1674228930520306299,
|
68 |
+
"learning_rate": 0.00096,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAD2bR7+1zU2/U/CMPrm+Pj9+me2+Y3YLvxPtyT4fL4E/hsY5P3w5Uj/nTcS+e7MUPk/Hgb+NkIQ/lqzgvj5gmL5dWJ8+JphGPISqPj6gR8A+NxE0vlkt8j7cCKW/QZBpPcQ6ND9kFdk+mt/hPt9Brr/rHxC/pOOavi6JDD/RTsY+6hQqvt4/tL+TLBu/Wk6EP+9bej9W7fk/xwZ4v1joGj/AwFI+3mOZP8RzkL35QpU/VeGDPxLef0Bpxji/BnYjPmBFIb/jtZU/8GZUvqs3gr/EOjQ/ZBXZPocSEcAzCzw/jjB+PdoTj78DuhO9eGDXP5fg/b7iTVU/RPizPeLYqL5Bao4/uU9sPTS4az5uuDg+tfF3Pl2k3b9ep4w+OADCvpMk1D5t3re/Ay9iPqG0IT5+hDO/2XHZPsdWq7+WKBs+xDo0P2QV2T6a3+E+30GuvyoeTD+jZtC/uK1iv8kOXz3JygHA/4aSv3PJsr86zJa/J98LPtEyrT5JlBU/GpOvPQQ8sz/q+jC7lASFP5PH8DwQuoc/rCaPvwP5A8DZTgI916yePynHtLu1fqm/eW15vMQ6ND9kFdk+hxIRwN9Brr+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACngae2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAcsS9PQAAAAB/m+m/AAAAADjrbzsAAAAAiWvuPwAAAACX0oS9AAAAAFtZ9z8AAAAA5bZ3PQAAAADTpea/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA203dtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgB7guT0AAAAARNT4vwAAAADDmLm9AAAAADDG9j8AAAAAyU2uvQAAAACmRgBAAAAAAALqnzwAAAAA/s7yvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABYHArYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAKMWE9AAAAAAZI2b8AAAAAW83xvQAAAADzZ+U/AAAAAMLZAj0AAAAAzyj3PwAAAAA4OFK9AAAAABwl9L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADIx1Q1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA2JYnPQAAAAAapv2/AAAAANqf/D0AAAAAi7T0PwAAAACLjye9AAAAAC8F5z8AAAAASZddPAAAAADPSPW/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVQgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQI2z2a2F36iMAWyUTegDjAF0lEdAqCwZqubI93V9lChoBkdAjcKVBdD6WWgHTegDaAhHQKg0cMZxaPl1fZQoaAZHQJMpjNt65XloB03oA2gIR0CoNMvCMxXXdX2UKGgGR0CSON/dZaFFaAdN6ANoCEdAqDeVOdoWYXV9lChoBkdAkiHuF10T12gHTegDaAhHQKg4Ysyzoll1fZQoaAZHQIy0N90A93doB03oA2gIR0CoQRhY/3WXdX2UKGgGR0CRAPVhCtzTaAdN6ANoCEdAqEFyHoHLR3V9lChoBkdAg95h8IAwPGgHTegDaAhHQKhENwqAjIJ1fZQoaAZHQJHhJRvWH1xoB03oA2gIR0CoRQwCCBf8dX2UKGgGR0CI4ltQbdadaAdN4AJoCEdAqEqW+bmU4nV9lChoBkdAjCQeeOGTLWgHTegDaAhHQKhNlva11GN1fZQoaAZHQJAn2VpsXSBoB03oA2gIR0CoUMPqC6H1dX2UKGgGR0CMMJ++/QBxaAdN6ANoCEdAqFGSQo1DSnV9lChoBkdAjy9E3bVSXWgHTegDaAhHQKhXM4nWrfd1fZQoaAZHQH8wXpr1uixoB03dAWgIR0CoV49jPOY6dX2UKGgGR0CKcWTaCcwyaAdN6ANoCEdAqFor15B1LnV9lChoBkdAhp1L8iwB52gHTRMDaAhHQKhanAj6eoV1fZQoaAZHQJBzhPznRsxoB03oA2gIR0CoY5xLK3d9dX2UKGgGR0COvvK6nR9gaAdN6ANoCEdAqGPz5TIeYHV9lChoBkdAip66V+qioWgHTVoDaAhHQKhlLmA9V3l1fZQoaAZHQI/Ou3vx6OZoB03oA2gIR0CoZwRBE8aGdX2UKGgGR0CQugJGvwEyaAdN6ANoCEdAqHMqKHfuTnV9lChoBkdAkd4uQZGayGgHTegDaAhHQKhzgTGHYYl1fZQoaAZHQJCXAHD7655oB03oA2gIR0CodMa/h2nsdX2UKGgGR0CQpU67ulXSaAdN6ANoCEdAqHYkS/TLGXV9lChoBkdAYx8H8jzI3mgHTQ4BaAhHQKh2jMi8nNR1fZQoaAZHQIy/IhOgxrVoB03TA2gIR0Cof8ydnTRZdX2UKGgGR0CQ132Dg62faAdN6ANoCEdAqIFTEm6XjXV9lChoBkdAj1yknkT6BWgHTegDaAhHQKiCsNn5BTp1fZQoaAZHQJKkw2uPmxNoB03oA2gIR0CogxhTfixWdX2UKGgGR0CIM6IO6NEPaAdN4QJoCEdAqIxHUrkKeHV9lChoBkdAkMxYSlFc6mgHTegDaAhHQKiMR9pAUtZ1fZQoaAZHQJGBMS7GvOhoB03oA2gIR0Cojck7GNrCdX2UKGgGR0CCcygElme2aAdN6ANoCEdAqI8cXYUWVXV9lChoBkdAiitt9hJAdGgHTegDaAhHQKiYm4J/oaF1fZQoaAZHQIpgiWPcSGtoB03oA2gIR0ComJv/7zkIdX2UKGgGR0CHJbXumaYvaAdN6ANoCEdAqJoZOk+HJ3V9lChoBkdAXJQiosI3SGgHS59oCEdAqJqLGkvboXV9lChoBkdAkCmwhOgxrWgHTegDaAhHQKibZPAO8TV1fZQoaAZHQJA4qK4x1xNoB03oA2gIR0CopQ/pdKNAdX2UKGgGR0CKh4mQbMouaAdN6ANoCEdAqKaVbLU1AXV9lChoBkdAjbnKhtcfNmgHTegDaAhHQKinCE/Spit1fZQoaAZHQIwRf05EMLFoB03oA2gIR0Cop+I3zcyndX2UKGgGR0B1jrTEzfrKaAdNoQFoCEdAqKul7Qb++HV9lChoBkdAjWcRkNFz+2gHTegDaAhHQKixS3MINVl1fZQoaAZHQI33E/dIoVpoB03oA2gIR0Cos0Zv1lGxdX2UKGgGR0Bf0v2TPjXGaAdLx2gIR0Cos8Zof0VadX2UKGgGR0CQLkwR5C4SaAdN6ANoCEdAqLQzJnxri3V9lChoBkdAjWIAAyVObmgHTegDaAhHQKi4DDk2gnN1fZQoaAZHQI84um+CbttoB03oA2gIR0Cov80e2d/bdX2UKGgGR0CQn1ptJnQIaAdN6ANoCEdAqMBQAbQ1JnV9lChoBkdAkEqfbO/tY2gHTegDaAhHQKjAsJtzjm11fZQoaAZHQJF/AtEofCBoB03oA2gIR0CoxJnqu8sddX2UKGgGR0CRDJjCYTkAaAdN6ANoCEdAqMxD5ftx/HV9lChoBkdAkSMIZ/CqImgHTegDaAhHQKjMwdGRV6x1fZQoaAZHQIhXEQumJnBoB03oA2gIR0CozR1TaTOgdX2UKGgGR0CPeGuHvc8DaAdN6ANoCEdAqND0EFGG23V9lChoBkdAjqYwUQCjlGgHTegDaAhHQKjYo4yXUpd1fZQoaAZHQI85c0aZQYVoB03oA2gIR0Co2R5jpcHGdX2UKGgGR0COGrf8dgfEaAdN6ANoCEdAqNl7ngYP5HV9lChoBkdAkF165CngpGgHTegDaAhHQKjdYeCkGiZ1fZQoaAZHQIoc369CeEtoB03oA2gIR0Co5QF7laKUdX2UKGgGR0CMqEJFb3XaaAdN6ANoCEdAqOV/l+3H73V9lChoBkdAje2sDwH7g2gHTegDaAhHQKjl3gIhQnB1fZQoaAZHQI30Rg1FYuFoB03oA2gIR0Co6bS31BdEdX2UKGgGR0CH/g4y44IbaAdN6ANoCEdAqPFshLXcxnV9lChoBkdAj7L4yO7xu2gHTegDaAhHQKjx/A2ycCp1fZQoaAZHQIzeecx0uDloB03oA2gIR0Co8l5TqB3BdX2UKGgGR0CO1xg7YChfaAdN6ANoCEdAqPY+yAxzrHV9lChoBkdAjPiNVaOghGgHTegDaAhHQKj97f3vhIh1fZQoaAZHQIeb/evZAY5oB03oA2gIR0Co/mjR2KVIdX2UKGgGR0CMgySdvsJIaAdN6ANoCEdAqP7MGqxTsXV9lChoBkdAjsGMw1zhgmgHTegDaAhHQKkCpt8eCCl1fZQoaAZHQI4YmwxFiKBoB03oA2gIR0CpCoMtsenydX2UKGgGR0CNo4D1XeWOaAdN6ANoCEdAqQsCo2n89HV9lChoBkdAiSx5rpJPImgHTegDaAhHQKkLXKTSssB1fZQoaAZHQI99FgSeyzJoB03oA2gIR0CpDyxoRIz4dX2UKGgGR0CQ9AMhouf3aAdN6ANoCEdAqRbncer+53V9lChoBkdAkIL5RsMy8GgHTegDaAhHQKkXZGViWmh1fZQoaAZHQJDolIoVmBhoB03oA2gIR0CpF8Mu3+dcdX2UKGgGR0CQ0nD0163RaAdN6ANoCEdAqRuanR9gGHV9lChoBkdAkQp5JTVDr2gHTbQDaAhHQKkityWiUPh1fZQoaAZHQJEN/I+4b0hoB03oA2gIR0CpI9tV7x/edX2UKGgGR0CS9W48U21laAdN6ANoCEdAqSQ3LLZBcHV9lChoBkdAkgHMbrC3w2gHTegDaAhHQKkoF2xIJ7d1fZQoaAZHQJQDW5hBqsVoB03oA2gIR0CpLyNMwlBydX2UKGgGR0CSy9MPz4DcaAdN6ANoCEdAqTBmIoE0SHV9lChoBkdAkXzVDjR2KWgHTegDaAhHQKkwzlUZNwl1fZQoaAZHQJTYA+X7cfxoB03oA2gIR0CpNK8Udq+KdX2UKGgGR0CRNREbHZK4aAdN6ANoCEdAqTuxcX3xnXV9lChoBkdAkNk7cbiqAGgHTegDaAhHQKk82z1K5Cp1fZQoaAZHQI4Yd0zTF2poB03oA2gIR0CpPTdIf8uSdX2UKGgGR0CQP/Hc1wYMaAdN6ANoCEdAqUEbXL/0d3V9lChoBkdAkpLa4Ds+mmgHTegDaAhHQKlIFqQA+6l1fZQoaAZHQJHAQJZ4fOloB03oA2gIR0CpSTEFwDNhdX2UKGgGR0CS7Z2nsLOSaAdN6ANoCEdAqUmRDkU9IXV9lChoBkdAkJRAwwj+rGgHTegDaAhHQKlNaWldkax1fZQoaAZHQI3gji4rjHZoB03oA2gIR0CpVG3cQAdXdX2UKGgGR0CRpwFZxJd0aAdN6ANoCEdAqVWObNKRMnV9lChoBkdAjNV+izsyBWgHTegDaAhHQKlV7eTmnwZ1ZS4="
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 62500,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4cd3cc71db8b2d38c605fab2f7f27855e444233ac048805c813d5c2df0f63542
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ee602a262f774c88aa63601a68dfdc370032a448a9ce21873706cfb0cdc67001
|
3 |
+
size 56958
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f54bb534af0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f54bb534b80>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f54bb534c10>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f54bb534ca0>", "_build": "<function ActorCriticPolicy._build at 0x7f54bb534d30>", "forward": "<function ActorCriticPolicy.forward at 0x7f54bb534dc0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f54bb534e50>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f54bb534ee0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f54bb534f70>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f54bb538040>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f54bb5380d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f54bb538160>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f54bb52dd20>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674228930520306299, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAD2bR7+1zU2/U/CMPrm+Pj9+me2+Y3YLvxPtyT4fL4E/hsY5P3w5Uj/nTcS+e7MUPk/Hgb+NkIQ/lqzgvj5gmL5dWJ8+JphGPISqPj6gR8A+NxE0vlkt8j7cCKW/QZBpPcQ6ND9kFdk+mt/hPt9Brr/rHxC/pOOavi6JDD/RTsY+6hQqvt4/tL+TLBu/Wk6EP+9bej9W7fk/xwZ4v1joGj/AwFI+3mOZP8RzkL35QpU/VeGDPxLef0Bpxji/BnYjPmBFIb/jtZU/8GZUvqs3gr/EOjQ/ZBXZPocSEcAzCzw/jjB+PdoTj78DuhO9eGDXP5fg/b7iTVU/RPizPeLYqL5Bao4/uU9sPTS4az5uuDg+tfF3Pl2k3b9ep4w+OADCvpMk1D5t3re/Ay9iPqG0IT5+hDO/2XHZPsdWq7+WKBs+xDo0P2QV2T6a3+E+30GuvyoeTD+jZtC/uK1iv8kOXz3JygHA/4aSv3PJsr86zJa/J98LPtEyrT5JlBU/GpOvPQQ8sz/q+jC7lASFP5PH8DwQuoc/rCaPvwP5A8DZTgI916yePynHtLu1fqm/eW15vMQ6ND9kFdk+hxIRwN9Brr+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACngae2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAcsS9PQAAAAB/m+m/AAAAADjrbzsAAAAAiWvuPwAAAACX0oS9AAAAAFtZ9z8AAAAA5bZ3PQAAAADTpea/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA203dtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgB7guT0AAAAARNT4vwAAAADDmLm9AAAAADDG9j8AAAAAyU2uvQAAAACmRgBAAAAAAALqnzwAAAAA/s7yvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABYHArYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAKMWE9AAAAAAZI2b8AAAAAW83xvQAAAADzZ+U/AAAAAMLZAj0AAAAAzyj3PwAAAAA4OFK9AAAAABwl9L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADIx1Q1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA2JYnPQAAAAAapv2/AAAAANqf/D0AAAAAi7T0PwAAAACLjye9AAAAAC8F5z8AAAAASZddPAAAAADPSPW/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQI2z2a2F36iMAWyUTegDjAF0lEdAqCwZqubI93V9lChoBkdAjcKVBdD6WWgHTegDaAhHQKg0cMZxaPl1fZQoaAZHQJMpjNt65XloB03oA2gIR0CoNMvCMxXXdX2UKGgGR0CSON/dZaFFaAdN6ANoCEdAqDeVOdoWYXV9lChoBkdAkiHuF10T12gHTegDaAhHQKg4Ysyzoll1fZQoaAZHQIy0N90A93doB03oA2gIR0CoQRhY/3WXdX2UKGgGR0CRAPVhCtzTaAdN6ANoCEdAqEFyHoHLR3V9lChoBkdAg95h8IAwPGgHTegDaAhHQKhENwqAjIJ1fZQoaAZHQJHhJRvWH1xoB03oA2gIR0CoRQwCCBf8dX2UKGgGR0CI4ltQbdadaAdN4AJoCEdAqEqW+bmU4nV9lChoBkdAjCQeeOGTLWgHTegDaAhHQKhNlva11GN1fZQoaAZHQJAn2VpsXSBoB03oA2gIR0CoUMPqC6H1dX2UKGgGR0CMMJ++/QBxaAdN6ANoCEdAqFGSQo1DSnV9lChoBkdAjy9E3bVSXWgHTegDaAhHQKhXM4nWrfd1fZQoaAZHQH8wXpr1uixoB03dAWgIR0CoV49jPOY6dX2UKGgGR0CKcWTaCcwyaAdN6ANoCEdAqFor15B1LnV9lChoBkdAhp1L8iwB52gHTRMDaAhHQKhanAj6eoV1fZQoaAZHQJBzhPznRsxoB03oA2gIR0CoY5xLK3d9dX2UKGgGR0COvvK6nR9gaAdN6ANoCEdAqGPz5TIeYHV9lChoBkdAip66V+qioWgHTVoDaAhHQKhlLmA9V3l1fZQoaAZHQI/Ou3vx6OZoB03oA2gIR0CoZwRBE8aGdX2UKGgGR0CQugJGvwEyaAdN6ANoCEdAqHMqKHfuTnV9lChoBkdAkd4uQZGayGgHTegDaAhHQKhzgTGHYYl1fZQoaAZHQJCXAHD7655oB03oA2gIR0CodMa/h2nsdX2UKGgGR0CQpU67ulXSaAdN6ANoCEdAqHYkS/TLGXV9lChoBkdAYx8H8jzI3mgHTQ4BaAhHQKh2jMi8nNR1fZQoaAZHQIy/IhOgxrVoB03TA2gIR0Cof8ydnTRZdX2UKGgGR0CQ132Dg62faAdN6ANoCEdAqIFTEm6XjXV9lChoBkdAj1yknkT6BWgHTegDaAhHQKiCsNn5BTp1fZQoaAZHQJKkw2uPmxNoB03oA2gIR0CogxhTfixWdX2UKGgGR0CIM6IO6NEPaAdN4QJoCEdAqIxHUrkKeHV9lChoBkdAkMxYSlFc6mgHTegDaAhHQKiMR9pAUtZ1fZQoaAZHQJGBMS7GvOhoB03oA2gIR0Cojck7GNrCdX2UKGgGR0CCcygElme2aAdN6ANoCEdAqI8cXYUWVXV9lChoBkdAiitt9hJAdGgHTegDaAhHQKiYm4J/oaF1fZQoaAZHQIpgiWPcSGtoB03oA2gIR0ComJv/7zkIdX2UKGgGR0CHJbXumaYvaAdN6ANoCEdAqJoZOk+HJ3V9lChoBkdAXJQiosI3SGgHS59oCEdAqJqLGkvboXV9lChoBkdAkCmwhOgxrWgHTegDaAhHQKibZPAO8TV1fZQoaAZHQJA4qK4x1xNoB03oA2gIR0CopQ/pdKNAdX2UKGgGR0CKh4mQbMouaAdN6ANoCEdAqKaVbLU1AXV9lChoBkdAjbnKhtcfNmgHTegDaAhHQKinCE/Spit1fZQoaAZHQIwRf05EMLFoB03oA2gIR0Cop+I3zcyndX2UKGgGR0B1jrTEzfrKaAdNoQFoCEdAqKul7Qb++HV9lChoBkdAjWcRkNFz+2gHTegDaAhHQKixS3MINVl1fZQoaAZHQI33E/dIoVpoB03oA2gIR0Cos0Zv1lGxdX2UKGgGR0Bf0v2TPjXGaAdLx2gIR0Cos8Zof0VadX2UKGgGR0CQLkwR5C4SaAdN6ANoCEdAqLQzJnxri3V9lChoBkdAjWIAAyVObmgHTegDaAhHQKi4DDk2gnN1fZQoaAZHQI84um+CbttoB03oA2gIR0Cov80e2d/bdX2UKGgGR0CQn1ptJnQIaAdN6ANoCEdAqMBQAbQ1JnV9lChoBkdAkEqfbO/tY2gHTegDaAhHQKjAsJtzjm11fZQoaAZHQJF/AtEofCBoB03oA2gIR0CoxJnqu8sddX2UKGgGR0CRDJjCYTkAaAdN6ANoCEdAqMxD5ftx/HV9lChoBkdAkSMIZ/CqImgHTegDaAhHQKjMwdGRV6x1fZQoaAZHQIhXEQumJnBoB03oA2gIR0CozR1TaTOgdX2UKGgGR0CPeGuHvc8DaAdN6ANoCEdAqND0EFGG23V9lChoBkdAjqYwUQCjlGgHTegDaAhHQKjYo4yXUpd1fZQoaAZHQI85c0aZQYVoB03oA2gIR0Co2R5jpcHGdX2UKGgGR0COGrf8dgfEaAdN6ANoCEdAqNl7ngYP5HV9lChoBkdAkF165CngpGgHTegDaAhHQKjdYeCkGiZ1fZQoaAZHQIoc369CeEtoB03oA2gIR0Co5QF7laKUdX2UKGgGR0CMqEJFb3XaaAdN6ANoCEdAqOV/l+3H73V9lChoBkdAje2sDwH7g2gHTegDaAhHQKjl3gIhQnB1fZQoaAZHQI30Rg1FYuFoB03oA2gIR0Co6bS31BdEdX2UKGgGR0CH/g4y44IbaAdN6ANoCEdAqPFshLXcxnV9lChoBkdAj7L4yO7xu2gHTegDaAhHQKjx/A2ycCp1fZQoaAZHQIzeecx0uDloB03oA2gIR0Co8l5TqB3BdX2UKGgGR0CO1xg7YChfaAdN6ANoCEdAqPY+yAxzrHV9lChoBkdAjPiNVaOghGgHTegDaAhHQKj97f3vhIh1fZQoaAZHQIeb/evZAY5oB03oA2gIR0Co/mjR2KVIdX2UKGgGR0CMgySdvsJIaAdN6ANoCEdAqP7MGqxTsXV9lChoBkdAjsGMw1zhgmgHTegDaAhHQKkCpt8eCCl1fZQoaAZHQI4YmwxFiKBoB03oA2gIR0CpCoMtsenydX2UKGgGR0CNo4D1XeWOaAdN6ANoCEdAqQsCo2n89HV9lChoBkdAiSx5rpJPImgHTegDaAhHQKkLXKTSssB1fZQoaAZHQI99FgSeyzJoB03oA2gIR0CpDyxoRIz4dX2UKGgGR0CQ9AMhouf3aAdN6ANoCEdAqRbncer+53V9lChoBkdAkIL5RsMy8GgHTegDaAhHQKkXZGViWmh1fZQoaAZHQJDolIoVmBhoB03oA2gIR0CpF8Mu3+dcdX2UKGgGR0CQ0nD0163RaAdN6ANoCEdAqRuanR9gGHV9lChoBkdAkQp5JTVDr2gHTbQDaAhHQKkityWiUPh1fZQoaAZHQJEN/I+4b0hoB03oA2gIR0CpI9tV7x/edX2UKGgGR0CS9W48U21laAdN6ANoCEdAqSQ3LLZBcHV9lChoBkdAkgHMbrC3w2gHTegDaAhHQKkoF2xIJ7d1fZQoaAZHQJQDW5hBqsVoB03oA2gIR0CpLyNMwlBydX2UKGgGR0CSy9MPz4DcaAdN6ANoCEdAqTBmIoE0SHV9lChoBkdAkXzVDjR2KWgHTegDaAhHQKkwzlUZNwl1fZQoaAZHQJTYA+X7cfxoB03oA2gIR0CpNK8Udq+KdX2UKGgGR0CRNREbHZK4aAdN6ANoCEdAqTuxcX3xnXV9lChoBkdAkNk7cbiqAGgHTegDaAhHQKk82z1K5Cp1fZQoaAZHQI4Yd0zTF2poB03oA2gIR0CpPTdIf8uSdX2UKGgGR0CQP/Hc1wYMaAdN6ANoCEdAqUEbXL/0d3V9lChoBkdAkpLa4Ds+mmgHTegDaAhHQKlIFqQA+6l1fZQoaAZHQJHAQJZ4fOloB03oA2gIR0CpSTEFwDNhdX2UKGgGR0CS7Z2nsLOSaAdN6ANoCEdAqUmRDkU9IXV9lChoBkdAkJRAwwj+rGgHTegDaAhHQKlNaWldkax1fZQoaAZHQI3gji4rjHZoB03oA2gIR0CpVG3cQAdXdX2UKGgGR0CRpwFZxJd0aAdN6ANoCEdAqVWObNKRMnV9lChoBkdAjNV+izsyBWgHTegDaAhHQKlV7eTmnwZ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (970 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1102.5756510415727, "std_reward": 114.93257805065372, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-20T16:30:30.442421"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dbaacfb6afb9712d9f70e95061a0da69988bd0aaccf6907998521906d7c20eea
|
3 |
+
size 2136
|