osanseviero commited on
Commit
f759786
·
1 Parent(s): 5259a00

Upload ppo-LunarLander-v2/data

Browse files
Files changed (1) hide show
  1. ppo-LunarLander-v2/data +94 -0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f958973c950>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f958973c9e0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f958973ca70>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f958973cb00>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f958973cb90>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f958973cc20>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f958973ccb0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f958973cd40>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f958973cdd0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f958973ce60>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f958973cef0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f958977ec60>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 5013504,
46
+ "_total_timesteps": 5000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1652477299.0064783,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJqJsbvDsUS6hhAHtFZA2y7v12c3qaSzMwAAgD8AAIA/I72APoztCz8E4JO9V6Qiv5iVtz4eaVu+AAAAAAAAAADNIcK8hyrePkJhcj10qSW/vUYtvWskWj0AAAAAAAAAAJpotzzv9r0/HzWDPc1DVr4auRc9MwrjPQAAAAAAAAAAZoKKPMMRdbp9yOy3iTLdskgoX7sihQo3AACAPwAAgD/NDrS88SS+Pz5tU74nWFg+nMfovGj6yb0AAAAAAAAAAIBEMj46qaY/r9YZP1+/B7/Ep5s+HRd/PgAAAAAAAAAAoD01vq/knD9jVA+/lZ8Rv6zgm75+DKK+AAAAAAAAAABDEfs+vHwFvi80DL33/8k7niIrvq3BE7wAAAAAAAAAADPTAbzUIJ+8ptVbvQ/oZz3XIHQ94XKmuwAAgD8AAIA/zdbxPPYkErqVjZY6dO5zttQg3bkGLrG5AAAAAAAAAACaM388j15sujDzkbOD8XKvH8DiOSuftzMAAIA/AACAP0bPDz436Es/iwDTPQ2DR79CLI8+yhEfPAAAAAAAAAAAZqBDPD1TT7sSWdq90PkGPH1GVjymfPK8AACAPwAAgD8a82G9r60rP63jb72DyFO/FnewvblyEL0AAAAAAAAAAGaunT6LFSU/DaAPPWrfI78lCwo//iV2vQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.0027007999999999477,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVIRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIc4I2Obw6cUCUhpRSlIwBbJRLtIwBdJRHQLyyrgHeJpF1fZQoaAZoCWgPQwibq+Y54lFwQJSGlFKUaBVLp2gWR0C8sq9Pci4bdX2UKGgGaAloD0MIPrMkQI3vcECUhpRSlGgVS75oFkdAvLK6ksSTQnV9lChoBmgJaA9DCE+V7xkJ63FAlIaUUpRoFUvEaBZHQLyyzGKyfL91fZQoaAZoCWgPQwg9murJfNlxQJSGlFKUaBVLsmgWR0C8st+rIYFadX2UKGgGaAloD0MIrkZ2peWocUCUhpRSlGgVS8ZoFkdAvLL4BV+7UXV9lChoBmgJaA9DCNE7FXCP23FAlIaUUpRoFUvPaBZHQLyzJ63RXwN1fZQoaAZoCWgPQwiVEKyqV/JxQJSGlFKUaBVLwGgWR0C8s2EBsANodX2UKGgGaAloD0MIam0a22vXckCUhpRSlGgVS8loFkdAvLOaqlxffHV9lChoBmgJaA9DCCXqBZ8mYHNAlIaUUpRoFUvjaBZHQLyznavicXp1fZQoaAZoCWgPQwjfN772zBFxQJSGlFKUaBVLv2gWR0C8s6UX1rZbdX2UKGgGaAloD0MIuhXCauyYcECUhpRSlGgVS5VoFkdAvLOx7a7EpHV9lChoBmgJaA9DCFpJK75hPHFAlIaUUpRoFUuvaBZHQLyzsELYwqR1fZQoaAZoCWgPQwhjKZKvxOZxQJSGlFKUaBVL1GgWR0C8s7q/VRUFdX2UKGgGaAloD0MI4zYawNvdc0CUhpRSlGgVS8hoFkdAvLPBcY64lXV9lChoBmgJaA9DCKTC2EJQ3nFAlIaUUpRoFUu9aBZHQLyz/k6Lfk51fZQoaAZoCWgPQwiyhLUxtk5yQJSGlFKUaBVLp2gWR0C8tA5QtSQ6dX2UKGgGaAloD0MILdDukGKSckCUhpRSlGgVTSIBaBZHQLy0GVEuxr11fZQoaAZoCWgPQwigjPFhtrBzQJSGlFKUaBVLxGgWR0C8tBpTdcjadX2UKGgGaAloD0MIKAzKNJobcUCUhpRSlGgVS6loFkdAvLQtplBhQXV9lChoBmgJaA9DCBXGFoIcvHNAlIaUUpRoFUvKaBZHQLy0OWH1vl51fZQoaAZoCWgPQwiuYvGbwtZzQJSGlFKUaBVL8mgWR0C8tDv8l5WzdX2UKGgGaAloD0MInn5QFykzckCUhpRSlGgVS7VoFkdAvLRsKrq+rXV9lChoBmgJaA9DCHEd44oLxHFAlIaUUpRoFUu5aBZHQLy0pps41gp1fZQoaAZoCWgPQwjZ6JyfYltyQJSGlFKUaBVLrWgWR0C8tMmG/N7jdX2UKGgGaAloD0MI/Z/DfDk2ckCUhpRSlGgVS6RoFkdAvLTLM5fdAXV9lChoBmgJaA9DCPaZsz5ly3JAlIaUUpRoFUuuaBZHQLy04VWjoIR1fZQoaAZoCWgPQwjOjH403MBzQJSGlFKUaBVLu2gWR0C8uJzfNzKcdX2UKGgGaAloD0MIw9SWOkhwc0CUhpRSlGgVS8VoFkdAvLilytFKCnV9lChoBmgJaA9DCP7Soj5J4nNAlIaUUpRoFUvKaBZHQLy4yRtxdY51fZQoaAZoCWgPQwholgSoaZxwQJSGlFKUaBVLpmgWR0C8uMlK9PDYdX2UKGgGaAloD0MIZY9QM2SmcECUhpRSlGgVS7doFkdAvLj+2c8Tz3V9lChoBmgJaA9DCAeXjjnPQXJAlIaUUpRoFUuqaBZHQLy5CqzqrzZ1fZQoaAZoCWgPQwj1nzU/PqpxQJSGlFKUaBVLwWgWR0C8uRI5ksjFdX2UKGgGaAloD0MIk1URbnJWckCUhpRSlGgVS7xoFkdAvLkdF6RhdHV9lChoBmgJaA9DCOl/uRYtzm9AlIaUUpRoFUuxaBZHQLy5TW8AaNx1fZQoaAZoCWgPQwhbfXVVYAl0QJSGlFKUaBVL7WgWR0C8uVRNmDlHdX2UKGgGaAloD0MIQE8DBgmrc0CUhpRSlGgVS7VoFkdAvLmU12q1gHV9lChoBmgJaA9DCG6/fLIih3JAlIaUUpRoFUuqaBZHQLy5yl3Qla91fZQoaAZoCWgPQwiA07t4P5VxQJSGlFKUaBVLxWgWR0C8ueNEPUaydX2UKGgGaAloD0MIEr2MYnnjckCUhpRSlGgVS89oFkdAvLn11fVqe3V9lChoBmgJaA9DCKyt2F82yHJAlIaUUpRoFUuraBZHQLy6Ci6xxDN1fZQoaAZoCWgPQwjWVBaFXbBxQJSGlFKUaBVLz2gWR0C8uiRPfsNUdX2UKGgGaAloD0MIHyxjQ7e0cUCUhpRSlGgVS7BoFkdAvLpQJ5VwP3V9lChoBmgJaA9DCKlqgqi7lHFAlIaUUpRoFUuraBZHQLy6UtkWhyt1fZQoaAZoCWgPQwj/6nHfqoBzQJSGlFKUaBVL1GgWR0C8ulkpy6tldX2UKGgGaAloD0MICcGqevkycECUhpRSlGgVS7doFkdAvLpv1M/QjXV9lChoBmgJaA9DCFvSUQ6m53JAlIaUUpRoFUu8aBZHQLy6hhLXcxl1fZQoaAZoCWgPQwgibeNPFIpwQJSGlFKUaBVLomgWR0C8uom6f8MvdX2UKGgGaAloD0MI95Fbk24QcECUhpRSlGgVS61oFkdAvLqlgOSW7nV9lChoBmgJaA9DCA/uztptg3FAlIaUUpRoFUu1aBZHQLy6/1UEPlN1fZQoaAZoCWgPQwjhmjv6H0pwQJSGlFKUaBVLuWgWR0C8u3fCyhSMdX2UKGgGaAloD0MIhZm2f6Uec0CUhpRSlGgVS9xoFkdAvLub5aePJnV9lChoBmgJaA9DCNKOG373r3JAlIaUUpRoFUvaaBZHQLy7rsiSq2l1fZQoaAZoCWgPQwhfYFYo0rRyQJSGlFKUaBVLwGgWR0C8u7slC1JEdX2UKGgGaAloD0MIeO3ShsMNc0CUhpRSlGgVS85oFkdAvLu8P1+RYHV9lChoBmgJaA9DCBv0pbe/F3NAlIaUUpRoFUvFaBZHQLy79t2cJ+l1fZQoaAZoCWgPQwhlpx/UhZlwQJSGlFKUaBVLqGgWR0C8u/mE4//vdX2UKGgGaAloD0MI7KS+LG03ckCUhpRSlGgVS8VoFkdAvLwBLuhK2HV9lChoBmgJaA9DCAd+VMM+O3FAlIaUUpRoFUuyaBZHQLy8DTot+Th1fZQoaAZoCWgPQwjA54cRQipxQJSGlFKUaBVLzmgWR0C8vA+z2OABdX2UKGgGaAloD0MITMEaZxP2cECUhpRSlGgVS6poFkdAvLwgmF8G93V9lChoBmgJaA9DCEPnNXbJg3NAlIaUUpRoFUvKaBZHQLy8KB0IToN1fZQoaAZoCWgPQwhqvko+dvZyQJSGlFKUaBVLsWgWR0C8vIg482aVdX2UKGgGaAloD0MISwFp/wPWcECUhpRSlGgVS5xoFkdAvLzrjKgZj3V9lChoBmgJaA9DCCttcY3PdkFAlIaUUpRoFUuBaBZHQLy9J0knkT91fZQoaAZoCWgPQwhrRga5i0dzQJSGlFKUaBVLxmgWR0C8vSr0SRKZdX2UKGgGaAloD0MI+1qXGmEtc0CUhpRSlGgVS65oFkdAvL0q+RHPNXV9lChoBmgJaA9DCMRcUrWdT3FAlIaUUpRoFUuzaBZHQLy9QyksSTR1fZQoaAZoCWgPQwiVRszss31zQJSGlFKUaBVLumgWR0C8vVFzp5eJdX2UKGgGaAloD0MICisVVNSMcUCUhpRSlGgVS55oFkdAvL1aqgh8pnV9lChoBmgJaA9DCIlCy7r/gHFAlIaUUpRoFUuVaBZHQLy9amWMS9N1fZQoaAZoCWgPQwhjDRe5JxNxQJSGlFKUaBVLvmgWR0C8vZPmgam5dX2UKGgGaAloD0MIVTNrKaD1b0CUhpRSlGgVS7poFkdAvL2x27nPmnV9lChoBmgJaA9DCJerH5skgHBAlIaUUpRoFUvZaBZHQLy90amXPZ91fZQoaAZoCWgPQwj6K2SujG5xQJSGlFKUaBVL2mgWR0C8veZ1eSjhdX2UKGgGaAloD0MIPStpxTc7cECUhpRSlGgVS7ZoFkdAvL4gf2bobHV9lChoBmgJaA9DCCxn74y25kxAlIaUUpRoFUtwaBZHQLy+QEqUeMh1fZQoaAZoCWgPQwgzGvm8YthvQJSGlFKUaBVLqmgWR0C8vq1ndweedX2UKGgGaAloD0MIxAYLJ6lgckCUhpRSlGgVS9VoFkdAvL7arHU+cHV9lChoBmgJaA9DCKmhDcBG3nFAlIaUUpRoFUvCaBZHQLy+7mdRR/F1fZQoaAZoCWgPQwhRvMraJm9vQJSGlFKUaBVLtWgWR0C8vwbs0HhTdX2UKGgGaAloD0MIRKLQsq4yckCUhpRSlGgVS95oFkdAvL85i8WbgHV9lChoBmgJaA9DCC/gZYYNa3JAlIaUUpRoFUvDaBZHQLy/P9If8uV1fZQoaAZoCWgPQwiemPViaNVxQJSGlFKUaBVLz2gWR0C8vz/5HmRvdX2UKGgGaAloD0MIt2Pqrmz8ZkCUhpRSlGgVTegDaBZHQLy/jzkp7Tl1fZQoaAZoCWgPQwiZ1NAGYI1wQJSGlFKUaBVLq2gWR0C8v5GkzoECdX2UKGgGaAloD0MIYM0BgjkzckCUhpRSlGgVS6JoFkdAvL+xzySV4XV9lChoBmgJaA9DCMpt+x61kXNAlIaUUpRoFUvVaBZHQLy/u1FYuCh1fZQoaAZoCWgPQwhKXp1jAG9zQJSGlFKUaBVLr2gWR0C8v+xZIQOGdX2UKGgGaAloD0MIsDpypLOoZkCUhpRSlGgVTegDaBZHQLzAJP1tfol1fZQoaAZoCWgPQwjGounsZJFzQJSGlFKUaBVLvmgWR0C8wKIM8YAKdX2UKGgGaAloD0MIAaH18CXIcUCUhpRSlGgVS5xoFkdAvMCsC5mRNnV9lChoBmgJaA9DCNV46SbxxXJAlIaUUpRoFUu/aBZHQLzAtvkzXSV1fZQoaAZoCWgPQwhT6Sec3YNyQJSGlFKUaBVLrmgWR0C8wNF7MPjGdX2UKGgGaAloD0MIkGltGlu7ckCUhpRSlGgVS8RoFkdAvMDYoYvWYnV9lChoBmgJaA9DCLxZg/cVaHNAlIaUUpRoFUv7aBZHQLzBB08NhE11fZQoaAZoCWgPQwi/0Y4bfr1xQJSGlFKUaBVLomgWR0C8wQdsSCe3dX2UKGgGaAloD0MI8ghupGyOaECUhpRSlGgVTegDaBZHQLzBDHnlnyx1fZQoaAZoCWgPQwgAVHHjVrlzQJSGlFKUaBVL1WgWR0C8wS0Qsf7rdWUu"
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 3920,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 256,
86
+ "n_epochs": 8,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }