Chuanming's picture
Upload folder using huggingface_hub
fa4458a
# Copyright 2023 metric-space, The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from dataclasses import dataclass, field
import numpy as np
import torch
import torch.nn as nn
import tyro
from huggingface_hub import hf_hub_download
from huggingface_hub.utils import EntryNotFoundError
from transformers import CLIPModel, CLIPProcessor
from trl import DDPOConfig, DDPOTrainer, DefaultDDPOStableDiffusionPipeline
from trl.import_utils import is_xpu_available
@dataclass
class ScriptArguments:
hf_user_access_token: str
pretrained_model: str = "runwayml/stable-diffusion-v1-5"
"""the pretrained model to use"""
pretrained_revision: str = "main"
"""the pretrained model revision to use"""
hf_hub_model_id: str = "ddpo-finetuned-stable-diffusion"
"""HuggingFace repo to save model weights to"""
hf_hub_aesthetic_model_id: str = "trl-lib/ddpo-aesthetic-predictor"
"""HuggingFace model ID for aesthetic scorer model weights"""
hf_hub_aesthetic_model_filename: str = "aesthetic-model.pth"
"""HuggingFace model filename for aesthetic scorer model weights"""
ddpo_config: DDPOConfig = field(
default_factory=lambda: DDPOConfig(
num_epochs=200,
train_gradient_accumulation_steps=1,
sample_num_steps=50,
sample_batch_size=6,
train_batch_size=3,
sample_num_batches_per_epoch=4,
per_prompt_stat_tracking=True,
per_prompt_stat_tracking_buffer_size=32,
tracker_project_name="stable_diffusion_training",
log_with="wandb",
project_kwargs={
"logging_dir": "./logs",
"automatic_checkpoint_naming": True,
"total_limit": 5,
"project_dir": "./save",
},
)
)
class MLP(nn.Module):
def __init__(self):
super().__init__()
self.layers = nn.Sequential(
nn.Linear(768, 1024),
nn.Dropout(0.2),
nn.Linear(1024, 128),
nn.Dropout(0.2),
nn.Linear(128, 64),
nn.Dropout(0.1),
nn.Linear(64, 16),
nn.Linear(16, 1),
)
@torch.no_grad()
def forward(self, embed):
return self.layers(embed)
class AestheticScorer(torch.nn.Module):
"""
This model attempts to predict the aesthetic score of an image. The aesthetic score
is a numerical approximation of how much a specific image is liked by humans on average.
This is from https://github.com/christophschuhmann/improved-aesthetic-predictor
"""
def __init__(self, *, dtype, model_id, model_filename):
super().__init__()
self.clip = CLIPModel.from_pretrained("openai/clip-vit-large-patch14")
self.processor = CLIPProcessor.from_pretrained("openai/clip-vit-large-patch14")
self.mlp = MLP()
try:
cached_path = hf_hub_download(model_id, model_filename)
except EntryNotFoundError:
cached_path = os.path.join(model_id, model_filename)
state_dict = torch.load(cached_path)
self.mlp.load_state_dict(state_dict)
self.dtype = dtype
self.eval()
@torch.no_grad()
def __call__(self, images):
device = next(self.parameters()).device
inputs = self.processor(images=images, return_tensors="pt")
inputs = {k: v.to(self.dtype).to(device) for k, v in inputs.items()}
embed = self.clip.get_image_features(**inputs)
# normalize embedding
embed = embed / torch.linalg.vector_norm(embed, dim=-1, keepdim=True)
return self.mlp(embed).squeeze(1)
def aesthetic_scorer(hub_model_id, model_filename):
scorer = AestheticScorer(
model_id=hub_model_id,
model_filename=model_filename,
dtype=torch.float32,
)
scorer = scorer.xpu() if is_xpu_available() else scorer.cuda()
def _fn(images, prompts, metadata):
images = (images * 255).round().clamp(0, 255).to(torch.uint8)
scores = scorer(images)
return scores, {}
return _fn
# list of example prompts to feed stable diffusion
animals = [
"cat",
"dog",
"horse",
"monkey",
"rabbit",
"zebra",
"spider",
"bird",
"sheep",
"deer",
"cow",
"goat",
"lion",
"frog",
"chicken",
"duck",
"goose",
"bee",
"pig",
"turkey",
"fly",
"llama",
"camel",
"bat",
"gorilla",
"hedgehog",
"kangaroo",
]
def prompt_fn():
return np.random.choice(animals), {}
def image_outputs_logger(image_data, global_step, accelerate_logger):
# For the sake of this example, we will only log the last batch of images
# and associated data
result = {}
images, prompts, _, rewards, _ = image_data[-1]
for i, image in enumerate(images):
prompt = prompts[i]
reward = rewards[i].item()
result[f"{prompt:.25} | {reward:.2f}"] = image.unsqueeze(0)
accelerate_logger.log_images(
result,
step=global_step,
)
if __name__ == "__main__":
args = tyro.cli(ScriptArguments)
pipeline = DefaultDDPOStableDiffusionPipeline(
args.pretrained_model, pretrained_model_revision=args.pretrained_revision, use_lora=True
)
trainer = DDPOTrainer(
args.ddpo_config,
aesthetic_scorer(args.hf_hub_aesthetic_model_id, args.hf_hub_aesthetic_model_filename),
prompt_fn,
pipeline,
image_samples_hook=image_outputs_logger,
)
trainer.train()
trainer.push_to_hub(args.hf_hub_model_id, token=args.hf_user_access_token)