Christian90 commited on
Commit
8edf941
·
1 Parent(s): 2baa3bf

Upload PPO LunarLander-v2 trained agent try5

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 282.47 +/- 22.42
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb0a8af2730>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb0a8af27b8>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb0a8af2840>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb0a8af28c8>", "_build": "<function ActorCriticPolicy._build at 0x7fb0a8af2950>", "forward": "<function ActorCriticPolicy.forward at 0x7fb0a8af29d8>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fb0a8af2a60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb0a8af2ae8>", "_predict": "<function ActorCriticPolicy._predict at 0x7fb0a8af2b70>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb0a8af2bf8>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb0a8af2c80>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb0a8af2d08>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fb0a8aeb0f0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 5013504, "_total_timesteps": 5000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678788366316557979, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVlAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGQvaG9tZS9ja2FobWFubi9taW5pY29uZGEzL2VudnMvcHl0b3JjaC9saWIvcHl0aG9uMy43L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgMdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoHn2UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAAAMCmvXttRj+OVvc8VG3kvmle371CkrQ9AAAAAAAAAAAAcB078mC3PyeQkD2uaZc+wycEO4X8Rz0AAAAAAAAAAA2fxj2Hq5k+Az4evouNa75ExoA7qwbvvAAAAAAAAAAAZkoEPHGTHLtLp5s7+yqEPFp2wLx1z2Q9AACAPwAAgD8TgII+9evCPpo1hb70kPq+q2PLPobqQr4AAAAAAAAAALOgaL0vZI8/D+QuviSwDb8cTBC+FlX/OwAAAAAAAAAAGmolvQX6jrsPrw475DKQPCHo3bxWHXY9AACAPwAAgD8znqU9uLS4P7o72T5Kdxa+r7cTPpidZz4AAAAAAAAAAGZEkT1XYXs8dhkHvh6yGr7xxsW7R5hDvQAAAAAAAAAAQJsDvqRPBLu6ROe6Mqq2tzdCGTycAQo6AACAPwAAgD8zVTG9kR6oP6PpAb+JiyK/QpvBuk+lDb4AAAAAAAAAAAB6W72NiMc+qsFDPerNn76LWye99SK+PQAAAAAAAAAAmr+oPBQEvrrbNrG6/YIctqfzfzmqgo01AACAPwAAgD8ac6m9rrfgvHJjwLz9JXy8DmwtPg5RSz4AAIA/AACAP5oREb2uh4+6SClbNrzwYzHYXiG7/NuEtQAAgD8AAIA/5r4TPVAXrj99yhQ/O83ivpm4drwK9yU9AAAAAAAAAACUdJRiLg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0027007999999999477, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVWxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIY3yYvWywcECUhpRSlIwBbJRL0owBdJRHQKp/VgLJCBx1fZQoaAZoCWgPQwgsflNYKQpyQJSGlFKUaBVL2WgWR0Cqf4I1tO2zdX2UKGgGaAloD0MIUfaWcn6jcUCUhpRSlGgVS/poFkdAqn+GpMpPRHV9lChoBmgJaA9DCAYSFD+GmnBAlIaUUpRoFU0QAmgWR0Cqf5vuG9HudX2UKGgGaAloD0MIJov7jwzscECUhpRSlGgVTYsBaBZHQKp/piuMdcV1fZQoaAZoCWgPQwhcAvBPqWpxQJSGlFKUaBVNGQFoFkdAqoAht+CsfnV9lChoBmgJaA9DCMO3sG68lnBAlIaUUpRoFU0rAWgWR0CqgCcjRlYmdX2UKGgGaAloD0MIwhN6/cllcECUhpRSlGgVTfcBaBZHQKqAPcRlHz91fZQoaAZoCWgPQwgejUP9rldyQJSGlFKUaBVNHQFoFkdAqoB9kOI683V9lChoBmgJaA9DCHxgx39BiXFAlIaUUpRoFU0wAWgWR0CqgJIiC8ODdX2UKGgGaAloD0MI1jvcDs0hc0CUhpRSlGgVTS8BaBZHQKqA5T3qRlp1fZQoaAZoCWgPQwiXV663za9xQJSGlFKUaBVL2GgWR0CqgdhyjpLVdX2UKGgGaAloD0MIqHLaU7K/cECUhpRSlGgVTZYBaBZHQKqCTq8lHBl1fZQoaAZoCWgPQwifPCzUGktzQJSGlFKUaBVL92gWR0Cqgmns9jgAdX2UKGgGaAloD0MIUrezr7zgc0CUhpRSlGgVTWQBaBZHQKqCZ+Lm6oV1fZQoaAZoCWgPQwgW9x+Zjg1yQJSGlFKUaBVNHgFoFkdAqoJyv3ai9XV9lChoBmgJaA9DCKQZi6azpHFAlIaUUpRoFU0JAWgWR0CqgsFSCOFQdX2UKGgGaAloD0MITI3QzxRPc0CUhpRSlGgVTRgBaBZHQKqC6DA8B+51fZQoaAZoCWgPQwhkXdxGQ/lxQJSGlFKUaBVL8mgWR0CqgxBb4agmdX2UKGgGaAloD0MIhjjWxe3QcUCUhpRSlGgVTXABaBZHQKqDWTVUdaN1fZQoaAZoCWgPQwiygt+GGFRyQJSGlFKUaBVL+2gWR0Cqg3H/95yEdX2UKGgGaAloD0MIK97IPHJlckCUhpRSlGgVTRwBaBZHQKqDdGDtgKF1fZQoaAZoCWgPQwird7gdGmVwQJSGlFKUaBVL/WgWR0Cqg4zLfUF0dX2UKGgGaAloD0MINV66SYz0cUCUhpRSlGgVS+hoFkdAqoOtRgqmTHV9lChoBmgJaA9DCO9Z12j5U3BAlIaUUpRoFU1RAWgWR0CqhAoSUTtcdX2UKGgGaAloD0MIN1K2SJqhckCUhpRSlGgVS+JoFkdAqoR8+qzZ6HV9lChoBmgJaA9DCEc9RKP7t3NAlIaUUpRoFU3HAWgWR0CqhMRtxdY5dX2UKGgGaAloD0MI5geu8oQUc0CUhpRSlGgVTQgBaBZHQKqFbI3irDJ1fZQoaAZoCWgPQwhFZcOaSq1uQJSGlFKUaBVL7GgWR0CqhWzKDCgsdX2UKGgGaAloD0MI6q9XWPDdcECUhpRSlGgVTQ8BaBZHQKqFiy1NQCV1fZQoaAZoCWgPQwju6H+5VllxQJSGlFKUaBVL9GgWR0CqhdX18LKFdX2UKGgGaAloD0MI0nMLXUm6ckCUhpRSlGgVTToBaBZHQKqF9kyULUl1fZQoaAZoCWgPQwj8VuvEJWdyQJSGlFKUaBVNPgFoFkdAqoYXCyhSL3V9lChoBmgJaA9DCKx0d52NFnNAlIaUUpRoFUvpaBZHQKqGGbKifxt1fZQoaAZoCWgPQwhdbcX+MkFyQJSGlFKUaBVNGQFoFkdAqoYhvm5lOHV9lChoBmgJaA9DCBfvx+2XFmNAlIaUUpRoFU3oA2gWR0CqhixL9MsZdX2UKGgGaAloD0MIdY9srhoIckCUhpRSlGgVS+ZoFkdAqoZGwNb1RXV9lChoBmgJaA9DCKneGtgqa3NAlIaUUpRoFU0IAWgWR0CqhmGvfTCtdX2UKGgGaAloD0MIWmYRii0XcUCUhpRSlGgVTSwBaBZHQKqGodELH+91fZQoaAZoCWgPQwih15/E5+JwQJSGlFKUaBVNGwFoFkdAqoaiAtnPFHV9lChoBmgJaA9DCFnd6jkpCnJAlIaUUpRoFU0KAWgWR0Cqh0+RxLkCdX2UKGgGaAloD0MIwAevXZp4c0CUhpRSlGgVS/VoFkdAqodblDF6zHV9lChoBmgJaA9DCMwk6gXffXBAlIaUUpRoFU1UAWgWR0CqjEVbA1vVdX2UKGgGaAloD0MIIQa69gUOcUCUhpRSlGgVS+VoFkdAqoxpRKpT/HV9lChoBmgJaA9DCMsr19smVnBAlIaUUpRoFUvYaBZHQKqM6mFajet1fZQoaAZoCWgPQwgZPbfQFatzQJSGlFKUaBVL92gWR0CqjP9J8OTadX2UKGgGaAloD0MIQZyHExgLcUCUhpRSlGgVTQcBaBZHQKqNdn1WbPR1fZQoaAZoCWgPQwh90LNZdYVzQJSGlFKUaBVNBAFoFkdAqo2DibUgCHV9lChoBmgJaA9DCFYQA137kHFAlIaUUpRoFU1EAWgWR0CqjY0R3/xUdX2UKGgGaAloD0MIyuGTTiQgckCUhpRSlGgVTSMBaBZHQKqNqBas6q91fZQoaAZoCWgPQwjpZRTLLZ1tQJSGlFKUaBVL92gWR0CqjfUh/y5JdX2UKGgGaAloD0MIzHnGvuRDb0CUhpRSlGgVTSEBaBZHQKqN+YsunMt1fZQoaAZoCWgPQwgV4pF4+adwQJSGlFKUaBVNAQFoFkdAqo4UuOCGvnV9lChoBmgJaA9DCMdGIF5Xom5AlIaUUpRoFU1HAWgWR0CqjjGFajesdX2UKGgGaAloD0MItkdvuI+IcECUhpRSlGgVTS8BaBZHQKqOQ75mAb11fZQoaAZoCWgPQwiTHLCrCWtyQJSGlFKUaBVL+2gWR0Cqjr7/4qPPdX2UKGgGaAloD0MIqByTxX3GckCUhpRSlGgVS95oFkdAqo7DCemNznV9lChoBmgJaA9DCG6mQjwSQm5AlIaUUpRoFUv+aBZHQKqPQL8aXKN1fZQoaAZoCWgPQwh0JQLVP0pzQJSGlFKUaBVL4mgWR0Cqj4Tn7pFDdX2UKGgGaAloD0MIxQPKppzYckCUhpRSlGgVTUMBaBZHQKqPmtq59Vp1fZQoaAZoCWgPQwh6qG3DKKxvQJSGlFKUaBVL+WgWR0Cqj7U6PsAvdX2UKGgGaAloD0MIAruaPKXncECUhpRSlGgVTQEBaBZHQKqQWwLVnVZ1fZQoaAZoCWgPQwgraFpiJWxzQJSGlFKUaBVL/GgWR0CqkHHtWuHOdX2UKGgGaAloD0MIzse1oaK5cUCUhpRSlGgVS+doFkdAqpCCMUAT7HV9lChoBmgJaA9DCLDG2XSEcW9AlIaUUpRoFU0PAWgWR0CqkI9vKlpHdX2UKGgGaAloD0MIgXnIlI+ZckCUhpRSlGgVTQYBaBZHQKqRM0pmVZ91fZQoaAZoCWgPQwi296kqtERzQJSGlFKUaBVNKgFoFkdAqpFRuZThpHV9lChoBmgJaA9DCIIavoW1U3JAlIaUUpRoFUvhaBZHQKqRXiay8jB1fZQoaAZoCWgPQwjFWKZfok9yQJSGlFKUaBVNLgFoFkdAqpGZNh3JP3V9lChoBmgJaA9DCIDvNm9cSnJAlIaUUpRoFU0/AWgWR0CqkayQYDT0dX2UKGgGaAloD0MI7ib4pulHcUCUhpRSlGgVTQcBaBZHQKqSYvMbFS91fZQoaAZoCWgPQwidgCbCBptwQJSGlFKUaBVNNwFoFkdAqpJnzYmLL3V9lChoBmgJaA9DCHeE04JXRHJAlIaUUpRoFUv1aBZHQKqSpdfsu4B1fZQoaAZoCWgPQwjBVZ5AWJ1xQJSGlFKUaBVNEQFoFkdAqpLfxQSBb3V9lChoBmgJaA9DCEpDjULSRnFAlIaUUpRoFU0ZAWgWR0CqkuJt78ekdX2UKGgGaAloD0MI+uyA6woqckCUhpRSlGgVS+5oFkdAqpM2lqJuVHV9lChoBmgJaA9DCFq77ULzQ29AlIaUUpRoFU0AAWgWR0Cqk5IZAIIGdX2UKGgGaAloD0MIhH8RNCYZckCUhpRSlGgVTQUBaBZHQKqTkZsKsuF1fZQoaAZoCWgPQwgGTODWHSJwQJSGlFKUaBVNAwFoFkdAqpOoFRpDeHV9lChoBmgJaA9DCEYiNIKN729AlIaUUpRoFUvZaBZHQKqT76Fdszl1fZQoaAZoCWgPQwjlX8sr185xQJSGlFKUaBVL/WgWR0CqlDSNfgJkdX2UKGgGaAloD0MIYhIu5JHQbUCUhpRSlGgVTRcBaBZHQKqUpCj1wo91fZQoaAZoCWgPQwi7050nHhVzQJSGlFKUaBVNAQFoFkdAqpSou01IiHV9lChoBmgJaA9DCIFfI0nQ3XJAlIaUUpRoFUvHaBZHQKqVOtxMnJF1fZQoaAZoCWgPQwh6+3PRUHZwQJSGlFKUaBVNKgFoFkdAqpU+ugYgq3V9lChoBmgJaA9DCFQ1QdS9EXFAlIaUUpRoFUvSaBZHQKqVWvUz9CN1fZQoaAZoCWgPQwg0EqER7JVyQJSGlFKUaBVL52gWR0CqlWHDaXa8dX2UKGgGaAloD0MIBtSbUfM2YECUhpRSlGgVTegDaBZHQKqVg4b0e2d1fZQoaAZoCWgPQwisArUYPOhxQJSGlFKUaBVNLAFoFkdAqpXr8Jlar3V9lChoBmgJaA9DCI9v7xr09XBAlIaUUpRoFU08AWgWR0CqlhQFcIJJdX2UKGgGaAloD0MIi3CTUeUackCUhpRSlGgVS9poFkdAqpYaSs8xK3V9lChoBmgJaA9DCFMDzefc5nFAlIaUUpRoFUvcaBZHQKqWeiRnvlV1fZQoaAZoCWgPQwj7lGOyeOtwQJSGlFKUaBVNOQFoFkdAqpbLWd3B6HV9lChoBmgJaA9DCEs5X+x9FHJAlIaUUpRoFU05AWgWR0CqlyWxhUiqdX2UKGgGaAloD0MI4qyImijNc0CUhpRSlGgVTUIBaBZHQKqXVKh+OOt1fZQoaAZoCWgPQwh5HtydNWRyQJSGlFKUaBVNLQFoFkdAqpejawljVnV9lChoBmgJaA9DCEcBomAGfHFAlIaUUpRoFU0TAWgWR0Cql8NPHktFdX2UKGgGaAloD0MI2pB/ZhCdbECUhpRSlGgVS+JoFkdAqpffXsgMdHV9lChoBmgJaA9DCOMbCp/tF3BAlIaUUpRoFUvwaBZHQKqX5DfFaSt1fZQoaAZoCWgPQwh4RIXq5odzQJSGlFKUaBVNJAFoFkdAqpfwgRsdk3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1530, "n_steps": 1024, "gamma": 0.9999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 256, "n_epochs": 5, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gASVlAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGQvaG9tZS9ja2FobWFubi9taW5pY29uZGEzL2VudnMvcHl0b3JjaC9saWIvcHl0aG9uMy43L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgMdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoHn2UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-4.15.0-201-generic-x86_64-with-debian-buster-sid # 212-Ubuntu SMP Mon Nov 28 11:29:59 UTC 2022", "Python": "3.7.3", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu117", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo_LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:539c169f769ae0b63f179542b0abb58676da07255729109cadc3144613557361
3
+ size 147385
ppo_LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
ppo_LunarLander-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb0a8af2730>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb0a8af27b8>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb0a8af2840>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb0a8af28c8>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fb0a8af2950>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fb0a8af29d8>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fb0a8af2a60>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb0a8af2ae8>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fb0a8af2b70>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb0a8af2bf8>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb0a8af2c80>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb0a8af2d08>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7fb0a8aeb0f0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 5013504,
47
+ "_total_timesteps": 5000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1678788366316557979,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gASVlAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGQvaG9tZS9ja2FobWFubi9taW5pY29uZGEzL2VudnMvcHl0b3JjaC9saWIvcHl0aG9uMy43L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgMdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoHn2UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAAAMCmvXttRj+OVvc8VG3kvmle371CkrQ9AAAAAAAAAAAAcB078mC3PyeQkD2uaZc+wycEO4X8Rz0AAAAAAAAAAA2fxj2Hq5k+Az4evouNa75ExoA7qwbvvAAAAAAAAAAAZkoEPHGTHLtLp5s7+yqEPFp2wLx1z2Q9AACAPwAAgD8TgII+9evCPpo1hb70kPq+q2PLPobqQr4AAAAAAAAAALOgaL0vZI8/D+QuviSwDb8cTBC+FlX/OwAAAAAAAAAAGmolvQX6jrsPrw475DKQPCHo3bxWHXY9AACAPwAAgD8znqU9uLS4P7o72T5Kdxa+r7cTPpidZz4AAAAAAAAAAGZEkT1XYXs8dhkHvh6yGr7xxsW7R5hDvQAAAAAAAAAAQJsDvqRPBLu6ROe6Mqq2tzdCGTycAQo6AACAPwAAgD8zVTG9kR6oP6PpAb+JiyK/QpvBuk+lDb4AAAAAAAAAAAB6W72NiMc+qsFDPerNn76LWye99SK+PQAAAAAAAAAAmr+oPBQEvrrbNrG6/YIctqfzfzmqgo01AACAPwAAgD8ac6m9rrfgvHJjwLz9JXy8DmwtPg5RSz4AAIA/AACAP5oREb2uh4+6SClbNrzwYzHYXiG7/NuEtQAAgD8AAIA/5r4TPVAXrj99yhQ/O83ivpm4drwK9yU9AAAAAAAAAACUdJRiLg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.0027007999999999477,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gASVWxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIY3yYvWywcECUhpRSlIwBbJRL0owBdJRHQKp/VgLJCBx1fZQoaAZoCWgPQwgsflNYKQpyQJSGlFKUaBVL2WgWR0Cqf4I1tO2zdX2UKGgGaAloD0MIUfaWcn6jcUCUhpRSlGgVS/poFkdAqn+GpMpPRHV9lChoBmgJaA9DCAYSFD+GmnBAlIaUUpRoFU0QAmgWR0Cqf5vuG9HudX2UKGgGaAloD0MIJov7jwzscECUhpRSlGgVTYsBaBZHQKp/piuMdcV1fZQoaAZoCWgPQwhcAvBPqWpxQJSGlFKUaBVNGQFoFkdAqoAht+CsfnV9lChoBmgJaA9DCMO3sG68lnBAlIaUUpRoFU0rAWgWR0CqgCcjRlYmdX2UKGgGaAloD0MIwhN6/cllcECUhpRSlGgVTfcBaBZHQKqAPcRlHz91fZQoaAZoCWgPQwgejUP9rldyQJSGlFKUaBVNHQFoFkdAqoB9kOI683V9lChoBmgJaA9DCHxgx39BiXFAlIaUUpRoFU0wAWgWR0CqgJIiC8ODdX2UKGgGaAloD0MI1jvcDs0hc0CUhpRSlGgVTS8BaBZHQKqA5T3qRlp1fZQoaAZoCWgPQwiXV663za9xQJSGlFKUaBVL2GgWR0CqgdhyjpLVdX2UKGgGaAloD0MIqHLaU7K/cECUhpRSlGgVTZYBaBZHQKqCTq8lHBl1fZQoaAZoCWgPQwifPCzUGktzQJSGlFKUaBVL92gWR0Cqgmns9jgAdX2UKGgGaAloD0MIUrezr7zgc0CUhpRSlGgVTWQBaBZHQKqCZ+Lm6oV1fZQoaAZoCWgPQwgW9x+Zjg1yQJSGlFKUaBVNHgFoFkdAqoJyv3ai9XV9lChoBmgJaA9DCKQZi6azpHFAlIaUUpRoFU0JAWgWR0CqgsFSCOFQdX2UKGgGaAloD0MITI3QzxRPc0CUhpRSlGgVTRgBaBZHQKqC6DA8B+51fZQoaAZoCWgPQwhkXdxGQ/lxQJSGlFKUaBVL8mgWR0CqgxBb4agmdX2UKGgGaAloD0MIhjjWxe3QcUCUhpRSlGgVTXABaBZHQKqDWTVUdaN1fZQoaAZoCWgPQwiygt+GGFRyQJSGlFKUaBVL+2gWR0Cqg3H/95yEdX2UKGgGaAloD0MIK97IPHJlckCUhpRSlGgVTRwBaBZHQKqDdGDtgKF1fZQoaAZoCWgPQwird7gdGmVwQJSGlFKUaBVL/WgWR0Cqg4zLfUF0dX2UKGgGaAloD0MINV66SYz0cUCUhpRSlGgVS+hoFkdAqoOtRgqmTHV9lChoBmgJaA9DCO9Z12j5U3BAlIaUUpRoFU1RAWgWR0CqhAoSUTtcdX2UKGgGaAloD0MIN1K2SJqhckCUhpRSlGgVS+JoFkdAqoR8+qzZ6HV9lChoBmgJaA9DCEc9RKP7t3NAlIaUUpRoFU3HAWgWR0CqhMRtxdY5dX2UKGgGaAloD0MI5geu8oQUc0CUhpRSlGgVTQgBaBZHQKqFbI3irDJ1fZQoaAZoCWgPQwhFZcOaSq1uQJSGlFKUaBVL7GgWR0CqhWzKDCgsdX2UKGgGaAloD0MI6q9XWPDdcECUhpRSlGgVTQ8BaBZHQKqFiy1NQCV1fZQoaAZoCWgPQwju6H+5VllxQJSGlFKUaBVL9GgWR0CqhdX18LKFdX2UKGgGaAloD0MI0nMLXUm6ckCUhpRSlGgVTToBaBZHQKqF9kyULUl1fZQoaAZoCWgPQwj8VuvEJWdyQJSGlFKUaBVNPgFoFkdAqoYXCyhSL3V9lChoBmgJaA9DCKx0d52NFnNAlIaUUpRoFUvpaBZHQKqGGbKifxt1fZQoaAZoCWgPQwhdbcX+MkFyQJSGlFKUaBVNGQFoFkdAqoYhvm5lOHV9lChoBmgJaA9DCBfvx+2XFmNAlIaUUpRoFU3oA2gWR0CqhixL9MsZdX2UKGgGaAloD0MIdY9srhoIckCUhpRSlGgVS+ZoFkdAqoZGwNb1RXV9lChoBmgJaA9DCKneGtgqa3NAlIaUUpRoFU0IAWgWR0CqhmGvfTCtdX2UKGgGaAloD0MIWmYRii0XcUCUhpRSlGgVTSwBaBZHQKqGodELH+91fZQoaAZoCWgPQwih15/E5+JwQJSGlFKUaBVNGwFoFkdAqoaiAtnPFHV9lChoBmgJaA9DCFnd6jkpCnJAlIaUUpRoFU0KAWgWR0Cqh0+RxLkCdX2UKGgGaAloD0MIwAevXZp4c0CUhpRSlGgVS/VoFkdAqodblDF6zHV9lChoBmgJaA9DCMwk6gXffXBAlIaUUpRoFU1UAWgWR0CqjEVbA1vVdX2UKGgGaAloD0MIIQa69gUOcUCUhpRSlGgVS+VoFkdAqoxpRKpT/HV9lChoBmgJaA9DCMsr19smVnBAlIaUUpRoFUvYaBZHQKqM6mFajet1fZQoaAZoCWgPQwgZPbfQFatzQJSGlFKUaBVL92gWR0CqjP9J8OTadX2UKGgGaAloD0MIQZyHExgLcUCUhpRSlGgVTQcBaBZHQKqNdn1WbPR1fZQoaAZoCWgPQwh90LNZdYVzQJSGlFKUaBVNBAFoFkdAqo2DibUgCHV9lChoBmgJaA9DCFYQA137kHFAlIaUUpRoFU1EAWgWR0CqjY0R3/xUdX2UKGgGaAloD0MIyuGTTiQgckCUhpRSlGgVTSMBaBZHQKqNqBas6q91fZQoaAZoCWgPQwjpZRTLLZ1tQJSGlFKUaBVL92gWR0CqjfUh/y5JdX2UKGgGaAloD0MIzHnGvuRDb0CUhpRSlGgVTSEBaBZHQKqN+YsunMt1fZQoaAZoCWgPQwgV4pF4+adwQJSGlFKUaBVNAQFoFkdAqo4UuOCGvnV9lChoBmgJaA9DCMdGIF5Xom5AlIaUUpRoFU1HAWgWR0CqjjGFajesdX2UKGgGaAloD0MItkdvuI+IcECUhpRSlGgVTS8BaBZHQKqOQ75mAb11fZQoaAZoCWgPQwiTHLCrCWtyQJSGlFKUaBVL+2gWR0Cqjr7/4qPPdX2UKGgGaAloD0MIqByTxX3GckCUhpRSlGgVS95oFkdAqo7DCemNznV9lChoBmgJaA9DCG6mQjwSQm5AlIaUUpRoFUv+aBZHQKqPQL8aXKN1fZQoaAZoCWgPQwh0JQLVP0pzQJSGlFKUaBVL4mgWR0Cqj4Tn7pFDdX2UKGgGaAloD0MIxQPKppzYckCUhpRSlGgVTUMBaBZHQKqPmtq59Vp1fZQoaAZoCWgPQwh6qG3DKKxvQJSGlFKUaBVL+WgWR0Cqj7U6PsAvdX2UKGgGaAloD0MIAruaPKXncECUhpRSlGgVTQEBaBZHQKqQWwLVnVZ1fZQoaAZoCWgPQwgraFpiJWxzQJSGlFKUaBVL/GgWR0CqkHHtWuHOdX2UKGgGaAloD0MIzse1oaK5cUCUhpRSlGgVS+doFkdAqpCCMUAT7HV9lChoBmgJaA9DCLDG2XSEcW9AlIaUUpRoFU0PAWgWR0CqkI9vKlpHdX2UKGgGaAloD0MIgXnIlI+ZckCUhpRSlGgVTQYBaBZHQKqRM0pmVZ91fZQoaAZoCWgPQwi296kqtERzQJSGlFKUaBVNKgFoFkdAqpFRuZThpHV9lChoBmgJaA9DCIIavoW1U3JAlIaUUpRoFUvhaBZHQKqRXiay8jB1fZQoaAZoCWgPQwjFWKZfok9yQJSGlFKUaBVNLgFoFkdAqpGZNh3JP3V9lChoBmgJaA9DCIDvNm9cSnJAlIaUUpRoFU0/AWgWR0CqkayQYDT0dX2UKGgGaAloD0MI7ib4pulHcUCUhpRSlGgVTQcBaBZHQKqSYvMbFS91fZQoaAZoCWgPQwidgCbCBptwQJSGlFKUaBVNNwFoFkdAqpJnzYmLL3V9lChoBmgJaA9DCHeE04JXRHJAlIaUUpRoFUv1aBZHQKqSpdfsu4B1fZQoaAZoCWgPQwjBVZ5AWJ1xQJSGlFKUaBVNEQFoFkdAqpLfxQSBb3V9lChoBmgJaA9DCEpDjULSRnFAlIaUUpRoFU0ZAWgWR0CqkuJt78ekdX2UKGgGaAloD0MI+uyA6woqckCUhpRSlGgVS+5oFkdAqpM2lqJuVHV9lChoBmgJaA9DCFq77ULzQ29AlIaUUpRoFU0AAWgWR0Cqk5IZAIIGdX2UKGgGaAloD0MIhH8RNCYZckCUhpRSlGgVTQUBaBZHQKqTkZsKsuF1fZQoaAZoCWgPQwgGTODWHSJwQJSGlFKUaBVNAwFoFkdAqpOoFRpDeHV9lChoBmgJaA9DCEYiNIKN729AlIaUUpRoFUvZaBZHQKqT76Fdszl1fZQoaAZoCWgPQwjlX8sr185xQJSGlFKUaBVL/WgWR0CqlDSNfgJkdX2UKGgGaAloD0MIYhIu5JHQbUCUhpRSlGgVTRcBaBZHQKqUpCj1wo91fZQoaAZoCWgPQwi7050nHhVzQJSGlFKUaBVNAQFoFkdAqpSou01IiHV9lChoBmgJaA9DCIFfI0nQ3XJAlIaUUpRoFUvHaBZHQKqVOtxMnJF1fZQoaAZoCWgPQwh6+3PRUHZwQJSGlFKUaBVNKgFoFkdAqpU+ugYgq3V9lChoBmgJaA9DCFQ1QdS9EXFAlIaUUpRoFUvSaBZHQKqVWvUz9CN1fZQoaAZoCWgPQwg0EqER7JVyQJSGlFKUaBVL52gWR0CqlWHDaXa8dX2UKGgGaAloD0MIBtSbUfM2YECUhpRSlGgVTegDaBZHQKqVg4b0e2d1fZQoaAZoCWgPQwisArUYPOhxQJSGlFKUaBVNLAFoFkdAqpXr8Jlar3V9lChoBmgJaA9DCI9v7xr09XBAlIaUUpRoFU08AWgWR0CqlhQFcIJJdX2UKGgGaAloD0MIi3CTUeUackCUhpRSlGgVS9poFkdAqpYaSs8xK3V9lChoBmgJaA9DCFMDzefc5nFAlIaUUpRoFUvcaBZHQKqWeiRnvlV1fZQoaAZoCWgPQwj7lGOyeOtwQJSGlFKUaBVNOQFoFkdAqpbLWd3B6HV9lChoBmgJaA9DCEs5X+x9FHJAlIaUUpRoFU05AWgWR0CqlyWxhUiqdX2UKGgGaAloD0MI4qyImijNc0CUhpRSlGgVTUIBaBZHQKqXVKh+OOt1fZQoaAZoCWgPQwh5HtydNWRyQJSGlFKUaBVNLQFoFkdAqpejawljVnV9lChoBmgJaA9DCEcBomAGfHFAlIaUUpRoFU0TAWgWR0Cql8NPHktFdX2UKGgGaAloD0MI2pB/ZhCdbECUhpRSlGgVS+JoFkdAqpffXsgMdHV9lChoBmgJaA9DCOMbCp/tF3BAlIaUUpRoFUvwaBZHQKqX5DfFaSt1fZQoaAZoCWgPQwh4RIXq5odzQJSGlFKUaBVNJAFoFkdAqpfwgRsdk3VlLg=="
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 1530,
80
+ "n_steps": 1024,
81
+ "gamma": 0.9999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 256,
87
+ "n_epochs": 5,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gASVlAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGQvaG9tZS9ja2FobWFubi9taW5pY29uZGEzL2VudnMvcHl0b3JjaC9saWIvcHl0aG9uMy43L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgMdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoHn2UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
ppo_LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:46823da60d20ed02252940ad5dedce53274b52e40c10e05c535402ed95e5eb1a
3
+ size 87929
ppo_LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9b30f9997e63dabc678860b35fd65ce8975157110d9a703b599e8e422cfacad2
3
+ size 43393
ppo_LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo_LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-4.15.0-201-generic-x86_64-with-debian-buster-sid # 212-Ubuntu SMP Mon Nov 28 11:29:59 UTC 2022
2
+ - Python: 3.7.3
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu117
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (182 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 282.46818078416436, "std_reward": 22.41557511450299, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-14T12:03:43.329136"}