Chris Xiao
upload files
2ca2f68
import numpy as np
import matplotlib.pyplot as plt
import monai
import torch
import os
import json
import matplotlib
import shutil
from torchview import draw_graph
def plot_architecture(network, img_shape, batch_size, name, save_dir):
if name == 'SegNet':
num_channels = 1
else:
num_channels = 2
H, D, W = img_shape
model_graph = draw_graph(network,
input_size=(batch_size, num_channels, H, D, W),
device='meta',
roll=True,
expand_nested=True,
save_graph=True,
filename=f"{name}_Graph",
directory=save_dir)
def make_if_dont_exist(folder_path, overwrite=False):
if os.path.exists(folder_path):
if not overwrite:
print(f'{folder_path} exists.')
else:
print(f"{folder_path} overwritten")
shutil.rmtree(folder_path, ignore_errors = True)
os.makedirs(folder_path)
else:
os.makedirs(folder_path)
print(f"{folder_path} created!")
def preview_image(image_array, normalize_by="volume", cmap=None, figsize=(12, 12), threshold=None):
"""
Display three orthogonal slices of the given 3D image.
image_array is assumed to be of shape (H,W,D)
If a number is provided for threshold, then pixels for which the value
is below the threshold will be shown in red
"""
plt.figure()
if normalize_by == "slice":
vmin = None
vmax = None
elif normalize_by == "volume":
vmin = 0
vmax = image_array.max().item()
else:
raise(ValueError(
f"Invalid value '{normalize_by}' given for normalize_by"))
# half-way slices
x, y, z = np.array(image_array.shape)//2
imgs = (image_array[x, :, :], image_array[:, y, :], image_array[:, :, z])
fig, axs = plt.subplots(1, 3, figsize=figsize)
for ax, im in zip(axs, imgs):
ax.axis('off')
ax.imshow(im, origin='lower', vmin=vmin, vmax=vmax, cmap=cmap)
# threshold will be useful when displaying jacobian determinant images;
# we will want to clearly see where the jacobian determinant is negative
if threshold is not None:
red = np.zeros(im.shape+(4,)) # RGBA array
red[im <= threshold] = [1, 0, 0, 1]
ax.imshow(red, origin='lower')
plt.savefig('test.png')
def plot_2D_vector_field(vector_field, downsampling):
"""Plot a 2D vector field given as a tensor of shape (2,H,W).
The plot origin will be in the lower left.
Using "x" and "y" for the rightward and upward directions respectively,
the vector at location (x,y) in the plot image will have
vector_field[1,y,x] as its x-component and
vector_field[0,y,x] as its y-component.
"""
downsample2D = monai.networks.layers.factories.Pool['AVG', 2](
kernel_size=downsampling)
vf_downsampled = downsample2D(vector_field.unsqueeze(0))[0]
plt.quiver(
vf_downsampled[1, :, :], vf_downsampled[0, :, :],
angles='xy', scale_units='xy', scale=downsampling,
headwidth=4.
)
def preview_3D_vector_field(vector_field, downsampling=None, ep=None, path=None):
"""
Display three orthogonal slices of the given 3D vector field.
vector_field should be a tensor of shape (3,H,W,D)
Vectors are projected into the viewing plane, so you are only seeing
their components in the viewing plane.
"""
if downsampling is None:
# guess a reasonable downsampling value to make a nice plot
downsampling = max(1, int(max(vector_field.shape[1:])) >> 5)
x, y, z = np.array(vector_field.shape[1:])//2 # half-way slices
plt.figure(figsize=(18, 6))
plt.subplot(1, 3, 1)
plt.axis('off')
plot_2D_vector_field(vector_field[[1, 2], x, :, :], downsampling)
plt.subplot(1, 3, 2)
plt.axis('off')
plot_2D_vector_field(vector_field[[0, 2], :, y, :], downsampling)
plt.subplot(1, 3, 3)
plt.axis('off')
plot_2D_vector_field(vector_field[[0, 1], :, :, z], downsampling)
plt.savefig(os.path.join(path, f'df_{ep}.png'))
def plot_2D_deformation(vector_field, grid_spacing, **kwargs):
"""
Interpret vector_field as a displacement vector field defining a deformation,
and plot an x-y grid warped by this deformation.
vector_field should be a tensor of shape (2,H,W)
"""
_, H, W = vector_field.shape
grid_img = np.zeros((H, W))
grid_img[np.arange(0, H, grid_spacing), :] = 1
grid_img[:, np.arange(0, W, grid_spacing)] = 1
grid_img = torch.tensor(grid_img, dtype=vector_field.dtype).unsqueeze(
0) # adds channel dimension, now (C,H,W)
warp = monai.networks.blocks.Warp(mode="bilinear", padding_mode="zeros")
grid_img_warped = warp(grid_img.unsqueeze(0), vector_field.unsqueeze(0))[0]
plt.imshow(grid_img_warped[0], origin='lower', cmap='gist_gray')
def preview_3D_deformation(vector_field, grid_spacing, **kwargs):
"""
Interpret vector_field as a displacement vector field defining a deformation,
and plot warped grids along three orthogonal slices.
vector_field should be a tensor of shape (3,H,W,D)
kwargs are passed to matplotlib plotting
Deformations are projected into the viewing plane, so you are only seeing
their components in the viewing plane.
"""
x, y, z = np.array(vector_field.shape[1:])//2 # half-way slices
plt.figure(figsize=(18, 6))
plt.subplot(1, 3, 1)
plt.axis('off')
plot_2D_deformation(vector_field[[1, 2], x, :, :], grid_spacing, **kwargs)
plt.subplot(1, 3, 2)
plt.axis('off')
plot_2D_deformation(vector_field[[0, 2], :, y, :], grid_spacing, **kwargs)
plt.subplot(1, 3, 3)
plt.axis('off')
plot_2D_deformation(vector_field[[0, 1], :, :, z], grid_spacing, **kwargs)
plt.show()
def jacobian_determinant(vf):
"""
Given a displacement vector field vf, compute the jacobian determinant scalar field.
vf is assumed to be a vector field of shape (3,H,W,D),
and it is interpreted as the displacement field.
So it is defining a discretely sampled map from a subset of 3-space into 3-space,
namely the map that sends point (x,y,z) to the point (x,y,z)+vf[:,x,y,z].
This function computes a jacobian determinant by taking discrete differences in each spatial direction.
Returns a numpy array of shape (H-1,W-1,D-1).
"""
_, H, W, D = vf.shape
# Compute discrete spatial derivatives
def diff_and_trim(array, axis): return np.diff(
array, axis=axis)[:, :(H-1), :(W-1), :(D-1)]
dx = diff_and_trim(vf, 1)
dy = diff_and_trim(vf, 2)
dz = diff_and_trim(vf, 3)
# Add derivative of identity map
dx[0] += 1
dy[1] += 1
dz[2] += 1
# Compute determinant at each spatial location
det = dx[0]*(dy[1]*dz[2]-dz[1]*dy[2]) - dy[0]*(dx[1]*dz[2] -
dz[1]*dx[2]) + dz[0]*(dx[1]*dy[2]-dy[1]*dx[2])
return det
def load_json(json_path):
assert type(json_path) == str
fjson = open(json_path, 'r')
json_file = json.load(fjson)
return json_file
def plot_progress(logger, save_dir, train_loss, val_loss, name):
"""
Should probably by improved
:return:
"""
assert len(train_loss) != 0
train_loss = np.array(train_loss)
try:
font = {'weight': 'normal',
'size': 18}
matplotlib.rc('font', **font)
fig = plt.figure(figsize=(30, 24))
ax = fig.add_subplot(111)
ax.plot(train_loss[:,0], train_loss[:,1], color='b', ls='-', label="loss_tr")
if len(val_loss) != 0:
val_loss = np.array(val_loss)
ax.plot(val_loss[:, 0], val_loss[:, 1], color='r', ls='-', label="loss_val")
ax.set_xlabel("epoch")
ax.set_ylabel("loss")
ax.legend()
ax.set_title(name)
fig.savefig(os.path.join(save_dir, name + ".png"))
plt.cla()
plt.close(fig)
except:
logger.info(f"failed to plot {name} training progress")
def save_reg_checkpoint(network, optimizer, epoch, best_loss, sim_loss=None, regular_loss=None, ana_loss=None, total_loss=None, save_dir=None, name=None):
all_loss = {
'best_loss': best_loss,
'total_loss': total_loss,
}
if sim_loss is not None:
all_loss['sim_loss'] = sim_loss
if regular_loss is not None:
all_loss['regular_loss'] = regular_loss
if ana_loss is not None:
all_loss['ana_loss'] = ana_loss
torch.save({
'epoch': epoch,
'network_state_dict': network.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'all_loss': all_loss,
}, os.path.join(save_dir, name+'_checkpoint.pth'))
def save_seg_checkpoint(network, optimizer, epoch, best_loss, super_loss=None, ana_loss=None, total_loss=None, save_dir=None, name=None):
all_loss = {
'best_loss': best_loss,
'total_loss': total_loss,
}
if super_loss is not None:
all_loss['super_loss'] = super_loss
if ana_loss is not None:
all_loss['ana_loss'] = ana_loss
torch.save({
'epoch': epoch,
'network_state_dict': network.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'all_loss': all_loss,
}, os.path.join(save_dir, name+'_checkpoint.pth'))
def load_latest_checkpoint(path, network, optimizer, device):
checkpoint_path = os.path.join(path, 'latest_checkpoint.pth')
checkpoint = torch.load(checkpoint_path, map_location=device)
network.load_state_dict(checkpoint['network_state_dict'])
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
all_loss = checkpoint['all_loss']
return network, optimizer, all_loss
def load_valid_checkpoint(path, device):
checkpoint_path = os.path.join(path, 'valid_checkpoint.pth')
checkpoint = torch.load(checkpoint_path, map_location=device)
all_loss = checkpoint['all_loss']
return all_loss
def load_best_checkpoint(path, device):
checkpoint_path = os.path.join(path, 'best_checkpoint.pth')
checkpoint = torch.load(checkpoint_path, map_location=device)
best_loss = checkpoint['all_loss']['best_loss']
return best_loss