|
import numpy as np |
|
import glob |
|
import ants |
|
import nibabel as nib |
|
import os |
|
import argparse |
|
import sys |
|
from crop import crop, cropV2, save_fileV2 |
|
from pathlib import Path |
|
|
|
def parse_command_line(): |
|
parser = argparse.ArgumentParser( |
|
description='pipeline for data preprocessing') |
|
parser.add_argument('-rs', metavar='shape after resizing', type=int, nargs='+', |
|
help='shape after resizing the image and segmentation. Expected to be 2^N') |
|
parser.add_argument('-fp', action='store_true', |
|
help='check if need to flip the data') |
|
parser.add_argument('-ti', metavar='task id and name', type=str, |
|
help='task name and id') |
|
argv = parser.parse_args() |
|
return argv |
|
|
|
def path_to_id(path): |
|
ids = [] |
|
for i in glob.glob(path + '/*nii.gz'): |
|
id = os.path.basename(i).split('.')[0] |
|
ids.append(id) |
|
return ids |
|
|
|
def pad(raw_image, bound_x, bound_y, bound_z, resize, seg=False): |
|
diff_x = resize[0] - (bound_x[1]-bound_x[0]) |
|
diff_y = resize[1] - (bound_y[1]-bound_y[0]) |
|
diff_z = resize[2] - (bound_z[1]-bound_z[0]) |
|
if diff_x < 0 or diff_y < 0 or diff_z < 0: |
|
sys.exit( |
|
'the dimension of ROI is larger than the resizing dimension, please choose a different padding dimension') |
|
left_y, right_y = split(diff_y) |
|
left_z, right_z = split(diff_z) |
|
left_x, right_x = split(diff_x) |
|
new_bound_x_left = bound_x[0] - left_x |
|
new_bound_x_right = bound_x[1] + right_x |
|
new_bound_y_left = bound_y[0] - left_y |
|
new_bound_y_right = bound_y[1] + right_y |
|
new_bound_z_left = bound_z[0] - left_z |
|
new_bound_z_right = bound_z[1] + right_z |
|
|
|
if new_bound_x_left < 0: |
|
new_bound_x_left = 0 |
|
new_bound_x_right = bound_x[1] + diff_x - bound_x[0] |
|
|
|
elif new_bound_x_right > raw_image.shape[0]: |
|
new_bound_x_right = raw_image.shape[0] |
|
new_bound_x_left = bound_x[0] - \ |
|
(diff_x - (raw_image.shape[0] - bound_x[1])) |
|
|
|
if new_bound_y_left < 0: |
|
new_bound_y_left = 0 |
|
new_bound_y_right = bound_y[1] + diff_y - bound_y[0] |
|
|
|
elif new_bound_y_right > raw_image.shape[1]: |
|
new_bound_y_right = raw_image.shape[1] |
|
new_bound_y_left = bound_y[0] - \ |
|
(diff_y - (raw_image.shape[1] - bound_y[1])) |
|
|
|
if new_bound_z_left < 0: |
|
new_bound_z_left = 0 |
|
new_bound_z_right = bound_z[1] + diff_z - bound_z[0] |
|
|
|
elif new_bound_z_right > raw_image.shape[2]: |
|
new_bound_z_right = raw_image.shape[2] |
|
new_bound_z_left = bound_z[0] - \ |
|
(diff_z - (raw_image.shape[2] - bound_z[1])) |
|
|
|
assert new_bound_x_right - new_bound_x_left == resize[0] |
|
assert new_bound_y_right - new_bound_y_left == resize[1] |
|
assert new_bound_z_right - new_bound_z_left == resize[2] |
|
if not seg: |
|
return raw_image[new_bound_x_left:new_bound_x_right, new_bound_y_left:new_bound_y_right, new_bound_z_left:new_bound_z_right] |
|
else: |
|
new_seg = np.zeros_like(raw_image) |
|
new_seg[bound_x[0]:bound_x[1], |
|
bound_y[0]:bound_y[1], bound_z[0]:bound_z[1]] = raw_image[bound_x[0]:bound_x[1], bound_y[0]:bound_y[1], bound_z[0]:bound_z[1]] |
|
return new_seg[new_bound_x_left:new_bound_x_right, new_bound_y_left:new_bound_y_right, new_bound_z_left:new_bound_z_right] |
|
|
|
|
|
def split(distance): |
|
if distance == 0: |
|
return 0, 0 |
|
|
|
half_dist = int(distance / 2) |
|
left = int(half_dist * 0.8) |
|
right = distance - left |
|
return left, right |
|
|
|
|
|
def crop_and_flip(nib_img, nib_seg, ants_img, ants_seg, resize): |
|
img = nib_img.get_fdata() |
|
seg = nib_seg.get_fdata() |
|
gem = ants.label_geometry_measures(ants_seg, ants_img) |
|
low_x = min(list(gem.loc[:, 'BoundingBoxLower_x'])) |
|
upp_x = max(list(gem.loc[:, 'BoundingBoxUpper_x'])) |
|
low_y = min(list(gem.loc[:, 'BoundingBoxLower_y'])) |
|
upp_y = max(list(gem.loc[:, 'BoundingBoxUpper_y'])) |
|
low_z = min(list(gem.loc[:, 'BoundingBoxLower_z'])) |
|
upp_z = max(list(gem.loc[:, 'BoundingBoxUpper_z'])) |
|
|
|
img = Zscore_normalization(img) |
|
|
|
|
|
mid_x = int((low_x + upp_x) / 2) |
|
|
|
tuple_x_left = tuple([low_x, mid_x]) |
|
tuple_x_right = tuple([mid_x, upp_x]) |
|
tuple_y = tuple([low_y, upp_y]) |
|
tuple_z = tuple([low_z, upp_z]) |
|
left_img = pad(img, tuple_x_left, tuple_y, tuple_z, resize, seg=False) |
|
left_seg = pad(seg, tuple_x_left, tuple_y, tuple_z, resize, seg=True) |
|
right_img = pad(img, tuple_x_right, tuple_y, tuple_z, resize, seg=False) |
|
right_seg = pad(seg, tuple_x_right, tuple_y, tuple_z, resize, seg=True) |
|
flipped_right_img = np.flip(right_img, axis=0) |
|
flipped_right_seg = np.flip(right_seg, axis=0) |
|
|
|
return left_img, left_seg, flipped_right_img, flipped_right_seg |
|
|
|
|
|
def crop_and_flip_V2(nib_img, ants_img, resize, geo_info): |
|
img = nib_img.get_fdata() |
|
tuple_x = geo_info[0] |
|
tuple_y = geo_info[1] |
|
tuple_z = geo_info[2] |
|
low_x = tuple_x[0] |
|
upp_x = tuple_x[1] |
|
img = Zscore_normalization(img) |
|
|
|
|
|
mid_x = int((low_x + upp_x) / 2) |
|
|
|
tuple_x_left = tuple([low_x, mid_x]) |
|
tuple_x_right = tuple([mid_x, upp_x]) |
|
|
|
left_img = pad(img, tuple_x_left, tuple_y, tuple_z, resize, seg=False) |
|
right_img = pad(img, tuple_x_right, tuple_y, tuple_z, resize, seg=False) |
|
flipped_right_img = np.flip(right_img, axis=0) |
|
|
|
return left_img, flipped_right_img |
|
|
|
|
|
def MinMax_normalization(scan): |
|
lb = np.amin(scan) |
|
ub = np.amax(scan) |
|
scan = (scan - lb) / (ub - lb) |
|
return scan |
|
|
|
|
|
def Zscore_normalization(scan): |
|
mean = np.mean(scan) |
|
std = np.std(scan) |
|
lb = np.percentile(scan, 0.05) |
|
ub = np.percentile(scan, 99.5) |
|
scan = np.clip(scan, lb, ub) |
|
scan = (scan - mean) / std |
|
return scan |
|
|
|
|
|
def load_data(img_path, seg_path): |
|
nib_seg = nib.load(seg_path) |
|
nib_img = nib.load(img_path) |
|
ants_seg = ants.image_read(seg_path) |
|
ants_img = ants.image_read(img_path) |
|
return nib_img, nib_seg, ants_img, ants_seg |
|
|
|
|
|
def crop_flip_save_file(left_img, left_seg, flipped_right_img, flipped_right_seg, nib_img, nib_seg, output_img, output_seg, scan_id): |
|
left_img_nii = nib.Nifti1Image( |
|
left_img, affine=nib_img.affine, header=nib_img.header) |
|
left_seg_nii = nib.Nifti1Image( |
|
left_seg, affine=nib_seg.affine, header=nib_seg.header) |
|
right_img_nii = nib.Nifti1Image( |
|
flipped_right_img, affine=nib_img.affine, header=nib_img.header) |
|
right_seg_nii = nib.Nifti1Image( |
|
flipped_right_seg, affine=nib_seg.affine, header=nib_seg.header) |
|
left_img_nii.to_filename(os.path.join( |
|
output_img, 'right_' + scan_id + '.nii.gz')) |
|
left_seg_nii.to_filename(os.path.join( |
|
output_seg, 'right_' + scan_id + '.nii.gz')) |
|
right_img_nii.to_filename(os.path.join( |
|
output_img, 'left_' + scan_id + '.nii.gz')) |
|
right_seg_nii.to_filename(os.path.join( |
|
output_seg, 'left_' + scan_id + '.nii.gz')) |
|
|
|
def get_geometry_info(seg_path, img_path): |
|
abs_low_x = np.Inf |
|
abs_upp_x = -np.Inf |
|
abs_low_y = np.Inf |
|
abs_upp_y = -np.Inf |
|
abs_low_z = np.Inf |
|
abs_upp_z = -np.Inf |
|
for i in sorted(glob.glob(os.path.join(img_path, '*.nii.gz'))): |
|
name = os.path.basename(i) |
|
if os.path.exists(os.path.join(seg_path, name)): |
|
seg = ants.image_read(os.path.join(seg_path, name)) |
|
img = ants.image_read(i) |
|
gem = ants.label_geometry_measures(seg, img) |
|
low_x = min(list(gem.loc[:, 'BoundingBoxLower_x'])) |
|
upp_x = max(list(gem.loc[:, 'BoundingBoxUpper_x'])) |
|
low_y = min(list(gem.loc[:, 'BoundingBoxLower_y'])) |
|
upp_y = max(list(gem.loc[:, 'BoundingBoxUpper_y'])) |
|
low_z = min(list(gem.loc[:, 'BoundingBoxLower_z'])) |
|
upp_z = max(list(gem.loc[:, 'BoundingBoxUpper_z'])) |
|
if low_x < abs_low_x: |
|
abs_low_x = low_x |
|
if upp_x > abs_upp_x: |
|
abs_upp_x = upp_x |
|
if low_y < abs_low_y: |
|
abs_low_y = low_y |
|
if upp_y > abs_upp_y: |
|
abs_upp_y = upp_y |
|
if low_z < abs_low_z: |
|
abs_low_z = low_z |
|
if upp_z > abs_upp_z: |
|
abs_upp_z = upp_z |
|
|
|
tuple_x = tuple([abs_low_x, abs_upp_x]) |
|
tuple_y = tuple([abs_low_y, abs_upp_y]) |
|
tuple_z = tuple([abs_low_z, abs_upp_z]) |
|
return [tuple_x, tuple_y, tuple_z] |
|
|
|
|
|
def crop_flip_save_file_V2(left_img, flipped_right_img, nib_img, output_img, scan_id): |
|
left_img_nii = nib.Nifti1Image( |
|
left_img, affine=nib_img.affine, header=nib_img.header) |
|
right_img_nii = nib.Nifti1Image( |
|
flipped_right_img, affine=nib_img.affine, header=nib_img.header) |
|
left_img_nii.to_filename(os.path.join( |
|
output_img, 'right_' + scan_id + '.nii.gz')) |
|
right_img_nii.to_filename(os.path.join( |
|
output_img, 'left_' + scan_id + '.nii.gz')) |
|
|
|
def crop_save_file(left_img, left_seg, nib_img, nib_seg, output_img, output_seg, scan_id): |
|
left_img_nii = nib.Nifti1Image( |
|
left_img, affine=nib_img.affine, header=nib_img.header) |
|
left_seg_nii = nib.Nifti1Image( |
|
left_seg, affine=nib_seg.affine, header=nib_seg.header) |
|
left_img_nii.to_filename(os.path.join( |
|
output_img, scan_id + '.nii.gz')) |
|
left_seg_nii.to_filename(os.path.join( |
|
output_seg, scan_id + '.nii.gz')) |
|
|
|
|
|
def main(): |
|
ROOT_DIR = str(Path(os.getcwd()).parent.parent.absolute()) |
|
args = parse_command_line() |
|
resize_shape = args.rs |
|
flipped = args.fp |
|
deepatlas_path = ROOT_DIR |
|
task_id = args.ti |
|
base_path = os.path.join(deepatlas_path, 'deepatlas_raw_data_base', task_id, 'Training_dataset') |
|
image_path = os.path.join(base_path, 'images') |
|
seg_path = os.path.join(base_path, 'labels') |
|
output_path = os.path.join(deepatlas_path, 'deepatlas_preprocessed') |
|
task_path = os.path.join(deepatlas_path, 'deepatlas_preprocessed', task_id) |
|
training_data_path = os.path.join(deepatlas_path, 'deepatlas_preprocessed', task_id, 'Training_dataset') |
|
output_img = os.path.join(deepatlas_path, 'deepatlas_preprocessed', task_id, 'Training_dataset', 'images') |
|
output_seg = os.path.join(deepatlas_path, 'deepatlas_preprocessed', task_id, 'Training_dataset', 'labels') |
|
label_list = path_to_id(seg_path) |
|
geo_info = get_geometry_info(seg_path, image_path) |
|
print(geo_info) |
|
try: |
|
os.mkdir(output_path) |
|
except: |
|
print(f'{output_path} is already existed') |
|
|
|
try: |
|
os.mkdir(task_path) |
|
except: |
|
print(f'{task_path} is already existed') |
|
|
|
try: |
|
os.mkdir(training_data_path) |
|
except: |
|
print(f"{training_data_path} already exists") |
|
|
|
try: |
|
os.mkdir(output_path) |
|
except: |
|
print(f'{output_path} is already existed') |
|
|
|
try: |
|
os.mkdir(output_img) |
|
except: |
|
print(f'{output_img} is already existed') |
|
|
|
try: |
|
os.mkdir(output_seg) |
|
except: |
|
print(f'{output_seg} is already existed') |
|
|
|
for i in sorted(glob.glob(image_path + '/*nii.gz')): |
|
id = os.path.basename(i).split('.')[0] |
|
if id in label_list: |
|
label_path = os.path.join(seg_path, id + '.nii.gz') |
|
nib_img, nib_seg, ants_img, ants_seg = load_data(i, label_path) |
|
if flipped: |
|
left_img, left_seg, flipped_right_img, flipped_right_seg = crop_and_flip( |
|
nib_img, nib_seg, ants_img, ants_seg, resize_shape) |
|
print( |
|
'Scan ID: ' + id + f', img & seg before cropping: {nib_img.get_fdata().shape}, after cropping, flipping and padding: {left_img.shape} and {flipped_right_img.shape}') |
|
crop_flip_save_file(left_img, left_seg, flipped_right_img, flipped_right_seg, |
|
nib_img, nib_seg, output_img, output_seg, id) |
|
else: |
|
left_img, left_seg = crop( |
|
nib_img, nib_seg, ants_img, ants_seg, resize_shape) |
|
print( |
|
'Scan ID: ' + id + f', img & seg before cropping: {nib_img.get_fdata().shape}, after cropping and padding the image and seg: {left_img.shape}') |
|
crop_save_file(left_img, left_seg, nib_img, |
|
nib_seg, output_img, output_seg, id) |
|
else: |
|
nib_img = nib.load(i) |
|
ant_img = ants.image_read(i) |
|
if flipped: |
|
left_img, flipped_right_img = crop_and_flip_V2(nib_img, ant_img, resize_shape, geo_info) |
|
print( |
|
'Scan ID: ' + id + f', img before cropping: {nib_img.get_fdata().shape}, after cropping, flipping and padding: {left_img.shape} and {flipped_right_img.shape}') |
|
crop_flip_save_file_V2(left_img, flipped_right_img, nib_img, output_img, id) |
|
else: |
|
outImg = cropV2(nib_img, ant_img, resize_shape, geo_info) |
|
print( |
|
'Scan ID: ' + id + f', img before cropping: {nib_img.get_fdata().shape}, after cropping and padding the image: {outImg.shape}') |
|
save_fileV2(outImg, nib_img, output_img, id) |
|
|
|
if __name__ == '__main__': |
|
main() |
|
|