Chris Xiao
upload files
2ca2f68
raw
history blame
26.7 kB
import generators
import monai
import torch
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
import os
import sys
from pathlib import Path
import pickle
ROOT_DIR = str(Path(os.getcwd()).parent.parent.absolute())
sys.path.insert(0, os.path.join(ROOT_DIR, 'deepatlas/utils'))
sys.path.insert(0, os.path.join(ROOT_DIR, 'deepatlas/loss_function'))
from utils import (
preview_image, preview_3D_vector_field, preview_3D_deformation,
jacobian_determinant, plot_progress, make_if_dont_exist, save_seg_checkpoint, save_reg_checkpoint, load_latest_checkpoint,
load_best_checkpoint, load_valid_checkpoint, plot_architecture
)
from losses import (
warp_func, warp_nearest_func, lncc_loss_func, dice_loss_func, reg_losses, dice_loss_func2
)
def swap_training(network_to_train, network_to_not_train):
"""
Switch out of training one network and into training another
"""
for param in network_to_not_train.parameters():
param.requires_grad = False
for param in network_to_train.parameters():
param.requires_grad = True
network_to_not_train.eval()
network_to_train.train()
def train_network(dataloader_train_reg,
dataloader_valid_reg,
dataloader_train_seg,
dataloader_valid_seg,
device,
seg_net,
reg_net,
num_segmentation_classes,
lr_reg,
lr_seg,
lam_a,
lam_sp,
lam_re,
max_epoch,
val_step,
result_seg_path,
result_reg_path,
logger,
img_shape,
plot_network=False,
continue_training=False
):
# Training cell
make_if_dont_exist(os.path.join(result_seg_path, 'training_plot'))
make_if_dont_exist(os.path.join(result_reg_path, 'training_plot'))
make_if_dont_exist(os.path.join(result_seg_path, 'model'))
make_if_dont_exist(os.path.join(result_reg_path, 'model'))
make_if_dont_exist(os.path.join(result_seg_path, 'checkpoints'))
make_if_dont_exist(os.path.join(result_reg_path, 'checkpoints'))
ROOT_DIR = str(Path(result_reg_path).parent.absolute())
seg_availabilities = ['00', '01', '10', '11']
batch_generator_train_reg = generators.create_batch_generator(
dataloader_train_reg)
batch_generator_valid_reg = generators.create_batch_generator(
dataloader_valid_reg)
seg_train_sampling_weights = [
0] + [len(dataloader_train_reg[s]) for s in seg_availabilities[1:]]
print('----------'*10)
print(f"""When training seg_net alone, segmentation availabilities {seg_availabilities}
will be sampled with respective weights {seg_train_sampling_weights}""")
batch_generator_train_seg = generators.create_batch_generator(
dataloader_train_reg, seg_train_sampling_weights)
seg_net = seg_net.to(device)
reg_net = reg_net.to(device)
learning_rate_reg = lr_reg
optimizer_reg = torch.optim.Adam(reg_net.parameters(), learning_rate_reg)
scheduler_reg = torch.optim.lr_scheduler.StepLR(optimizer_reg, step_size=70, gamma=0.2, verbose=True)
learning_rate_seg = lr_seg
optimizer_seg = torch.optim.Adam(seg_net.parameters(), learning_rate_seg)
scheduler_seg = torch.optim.lr_scheduler.StepLR(optimizer_seg, step_size=50, gamma=0.2, verbose=True)
last_epoch = 0
training_losses_reg = []
validation_losses_reg = []
training_losses_seg = []
validation_losses_seg = []
regularization_loss_reg = []
anatomy_loss_reg = []
similarity_loss_reg = []
supervised_loss_seg = []
anatomy_loss_seg = []
best_seg_validation_loss = float('inf')
best_reg_validation_loss = float('inf')
last_epoch_valid = 0
if continue_training:
if os.path.exists(os.path.join(result_seg_path, 'checkpoints', 'valid_checkpoint.pth')) and os.path.exists(os.path.join(result_reg_path, 'checkpoints', 'valid_checkpoint.pth')):
if os.path.exists(os.path.join(result_seg_path, 'checkpoints', 'best_checkpoint.pth')) and os.path.exists(os.path.join(result_reg_path, 'checkpoints', 'best_checkpoint.pth')):
best_seg_validation_loss = load_best_checkpoint(os.path.join(result_reg_path, 'checkpoints'), device)
best_reg_validation_loss = load_best_checkpoint(os.path.join(result_seg_path, 'checkpoints'), device)
all_validation_losses_reg = load_valid_checkpoint(os.path.join(result_reg_path, 'checkpoints'), device)
all_validation_losses_seg = load_valid_checkpoint(os.path.join(result_seg_path, 'checkpoints'), device)
validation_losses_reg = all_validation_losses_reg['total_loss']
validation_losses_seg = all_validation_losses_seg['total_loss']
last_epoch_valid = np.minimum(len(validation_losses_reg), len(validation_losses_seg))
validation_losses_reg = validation_losses_reg[:last_epoch_valid]
validation_losses_seg = validation_losses_seg[:last_epoch_valid]
np_validation_losses_reg = np.array(validation_losses_reg)
np_validation_losses_seg = np.array(validation_losses_seg)
if best_reg_validation_loss not in np_validation_losses_reg[:, 1]:
best_reg_validation_loss = np.min(np_validation_losses_reg[:, 1])
if os.path.exists(os.path.join(result_reg_path, 'model', 'reg_net_last_best.pth')):
assert os.path.exists(os.path.join(result_reg_path, 'model', 'reg_net_best.pth'))
os.remove(os.path.join(result_reg_path, 'model', 'reg_net_best.pth'))
os.rename(os.path.join(result_reg_path, 'model', 'reg_net_last_best.pth'), os.path.join(result_reg_path, 'model', 'reg_net_best.pth'))
if best_seg_validation_loss not in np_validation_losses_seg[:, 1]:
best_seg_validation_loss = np.min(np_validation_losses_seg[:, 1])
if os.path.exists(os.path.join(result_seg_path, 'model', 'seg_net_last_best.pth')):
assert os.path.exists(os.path.join(result_seg_path, 'model', 'seg_net_best.pth'))
os.remove(os.path.join(result_seg_path, 'model', 'seg_net_best.pth'))
os.rename(os.path.join(result_seg_path, 'model', 'seg_net_last_best.pth'), os.path.join(result_seg_path, 'model', 'seg_net_best.pth'))
else:
if os.path.exists(os.path.join(result_seg_path, 'checkpoints', 'valid_checkpoint.pth')):
os.remove(os.path.join(result_seg_path, 'checkpoints', 'valid_checkpoint.pth'))
elif os.path.exists(os.path.join(result_reg_path, 'checkpoints', 'valid_checkpoint.pth')):
os.remove(os.path.join(result_reg_path, 'checkpoints', 'valid_checkpoint.pth'))
if last_epoch_valid != 0 and os.path.exists(os.path.join(result_seg_path, 'checkpoints', 'latest_checkpoint.pth')) and os.path.exists(os.path.join(result_reg_path, 'checkpoints', 'latest_checkpoint.pth')):
reg_net, optimizer_reg, all_training_losses_reg = load_latest_checkpoint(os.path.join(result_reg_path, 'checkpoints'), reg_net, optimizer_reg, device)
seg_net, optimizer_seg, all_training_losses_seg = load_latest_checkpoint(os.path.join(result_seg_path, 'checkpoints'), seg_net, optimizer_seg, device)
regularization_loss_reg = all_training_losses_reg['regular_loss']
anatomy_loss_reg = all_training_losses_reg['ana_loss']
similarity_loss_reg = all_training_losses_reg['sim_loss']
supervised_loss_seg = all_training_losses_seg['super_loss']
anatomy_loss_seg = all_training_losses_seg['ana_loss']
training_losses_reg = all_training_losses_reg['total_loss']
training_losses_seg = all_training_losses_seg['total_loss']
last_epoch_train = np.min(np.array([last_epoch_valid * val_step, len(training_losses_reg), len(training_losses_seg)]))
regularization_loss_reg = regularization_loss_reg[:last_epoch_train]
anatomy_loss_reg = anatomy_loss_reg[:last_epoch_train]
similarity_loss_reg = similarity_loss_reg[:last_epoch_train]
supervised_loss_seg = supervised_loss_seg[:last_epoch_train]
anatomy_loss_seg = anatomy_loss_seg[:last_epoch_train]
training_losses_reg = training_losses_reg[:last_epoch_train]
training_losses_seg = training_losses_seg[:last_epoch_train]
last_epoch = last_epoch_train
else:
if os.path.exists(os.path.join(result_seg_path, 'checkpoints', 'latest_checkpoint.pth')):
os.remove(os.path.join(result_seg_path, 'checkpoints', 'latest_checkpoint.pth'))
elif os.path.exists(os.path.join(result_reg_path, 'checkpoints', 'latest_checkpoint.pth')):
os.remove(os.path.join(result_reg_path, 'checkpoints', 'latest_checkpoint.pth'))
if len(dataloader_valid_reg) == 0:
validation_losses_reg = []
if len(dataloader_valid_seg) == 0:
validation_losses_seg = []
lambda_a = lam_a # anatomy loss weight
lambda_sp = lam_sp # supervised segmentation loss weight
# regularization loss weight
# monai has provided normalized bending energy loss
# no need to modify the weight according to the image size
lambda_r = lam_re
max_epochs = max_epoch
reg_phase_training_batches_per_epoch = 10
# Fewer batches needed, because seg_net converges more quickly
seg_phase_training_batches_per_epoch = 5
reg_phase_num_validation_batches_to_use = 10
val_interval = val_step
if plot_network:
plot_architecture(seg_net, img_shape, seg_phase_training_batches_per_epoch, 'SegNet', result_seg_path)
plot_architecture(reg_net, img_shape, reg_phase_training_batches_per_epoch, 'RegNet', result_reg_path)
logger.info('Start Training')
for epoch_number in range(last_epoch, max_epochs):
logger.info(f"Epoch {epoch_number+1}/{max_epochs}:")
# ------------------------------------------------
# reg_net training, with seg_net frozen
# ------------------------------------------------
# Keep computational graph in memory for reg_net, but not for seg_net, and do reg_net.train()
swap_training(reg_net, seg_net)
losses = []
regularization_loss = []
similarity_loss = []
anatomy_loss = []
for batch in batch_generator_train_reg(reg_phase_training_batches_per_epoch):
optimizer_reg.zero_grad()
loss_sim, loss_reg, loss_ana, df = reg_losses(
batch, device, reg_net, seg_net, num_segmentation_classes)
loss = loss_sim + lambda_r * loss_reg + lambda_a * loss_ana
loss.backward()
optimizer_reg.step()
losses.append(loss.item())
regularization_loss.append(loss_reg.item())
similarity_loss.append(loss_sim.item())
anatomy_loss.append(loss_ana.item())
#preview_3D_vector_field(df.cpu().detach()[0], ep=epoch_number, path=result_reg_path)
training_loss_reg = np.mean(losses)
regularization_loss_reg.append(
[epoch_number+1, np.mean(regularization_loss)])
similarity_loss_reg.append([epoch_number+1, np.mean(similarity_loss)])
anatomy_loss_reg.append([epoch_number+1, np.mean(anatomy_loss)])
logger.info(f"\treg training loss: {training_loss_reg}")
training_losses_reg.append([epoch_number+1, training_loss_reg])
logger.info("\tsave latest reg_net checkpoint")
save_reg_checkpoint(reg_net, optimizer_reg, epoch_number, training_loss_reg, sim_loss=similarity_loss_reg, regular_loss=regularization_loss_reg, ana_loss=anatomy_loss_reg, total_loss=training_losses_reg, save_dir=os.path.join(result_reg_path, 'checkpoints'), name='latest')
# validation process
if len(dataloader_valid_reg) == 0:
logger.info("\tno enough dataset for validation")
save_reg_checkpoint(reg_net, optimizer_reg, epoch_number, training_loss_reg, sim_loss=similarity_loss_reg, regular_loss=regularization_loss_reg, ana_loss=anatomy_loss_reg, total_loss=training_losses_reg, save_dir=os.path.join(result_reg_path, 'checkpoints'), name='best')
save_reg_checkpoint(reg_net, optimizer_reg, epoch_number, training_loss_reg, sim_loss=similarity_loss_reg, regular_loss=regularization_loss_reg, ana_loss=anatomy_loss_reg, total_loss=training_losses_reg, save_dir=os.path.join(result_reg_path, 'checkpoints'), name='valid')
if os.path.exists(os.path.join(result_reg_path, 'model', 'reg_net_best.pth')):
if os.path.exists(os.path.join(result_reg_path, 'model', 'reg_net_last_best.pth')):
os.remove(os.path.join(result_reg_path, 'model', 'reg_net_last_best.pth'))
os.rename(os.path.join(result_reg_path, 'model', 'reg_net_best.pth'), os.path.join(result_reg_path, 'model', 'reg_net_last_best.pth'))
torch.save(reg_net.state_dict(), os.path.join(result_reg_path, 'model', 'reg_net_best.pth'))
else:
if epoch_number % val_interval == 0:
reg_net.eval()
losses = []
with torch.no_grad():
for batch in batch_generator_valid_reg(reg_phase_num_validation_batches_to_use):
loss_sim, loss_reg, loss_ana, dv = reg_losses(
batch, device, reg_net, seg_net, num_segmentation_classes)
loss = loss_sim + lambda_r * loss_reg + lambda_a * loss_ana
losses.append(loss.item())
validation_loss_reg = np.mean(losses)
logger.info(f"\treg validation loss: {validation_loss_reg}")
validation_losses_reg.append([epoch_number+1, validation_loss_reg])
if validation_loss_reg < best_reg_validation_loss:
best_reg_validation_loss = validation_loss_reg
logger.info("\tsave best reg_net checkpoint and model")
save_reg_checkpoint(reg_net, optimizer_reg, epoch_number, best_reg_validation_loss, total_loss=validation_losses_reg, save_dir=os.path.join(result_reg_path, 'checkpoints'), name='best')
if os.path.exists(os.path.join(result_reg_path, 'model', 'reg_net_best.pth')):
if os.path.exists(os.path.join(result_reg_path, 'model', 'reg_net_last_best.pth')):
os.remove(os.path.join(result_reg_path, 'model', 'reg_net_last_best.pth'))
os.rename(os.path.join(result_reg_path, 'model', 'reg_net_best.pth'), os.path.join(result_reg_path, 'model', 'reg_net_last_best.pth'))
torch.save(reg_net.state_dict(), os.path.join(result_reg_path, 'model', 'reg_net_best.pth'))
save_reg_checkpoint(reg_net, optimizer_reg, epoch_number, validation_loss_reg, total_loss=validation_losses_reg, save_dir=os.path.join(result_reg_path, 'checkpoints'), name='valid')
plot_progress(logger, os.path.join(result_reg_path, 'training_plot'), training_losses_reg, validation_losses_reg, 'reg_net_training_loss')
plot_progress(logger, os.path.join(result_reg_path, 'training_plot'), regularization_loss_reg, [], 'regularization_reg_net_loss')
plot_progress(logger, os.path.join(result_reg_path, 'training_plot'), anatomy_loss_reg, [], 'anatomy_reg_net_loss')
plot_progress(logger, os.path.join(result_reg_path, 'training_plot'), similarity_loss_reg, [], 'similarity_reg_net_loss')
# scheduler_reg.step()
# Free up memory
del loss, loss_sim, loss_reg, loss_ana
torch.cuda.empty_cache()
# ------------------------------------------------
# seg_net training, with reg_net frozen
# ------------------------------------------------
# Keep computational graph in memory for seg_net, but not for reg_net, and do seg_net.train()
logger.info('\t'+'----'*10)
swap_training(seg_net, reg_net)
losses = []
supervised_loss = []
anatomy_loss = []
dice_loss = dice_loss_func()
warp = warp_func()
warp_nearest = warp_nearest_func()
dice_loss2 = dice_loss_func2()
for batch in batch_generator_train_seg(seg_phase_training_batches_per_epoch):
optimizer_seg.zero_grad()
img12 = batch['img12'].to(device)
displacement_fields = reg_net(img12)
seg1_predicted = seg_net(img12[:, [0], :, :, :]).softmax(dim=1)
seg2_predicted = seg_net(img12[:, [1], :, :, :]).softmax(dim=1)
# Below we compute the following:
# loss_supervised: supervised segmentation loss; compares ground truth seg with predicted seg
# loss_anatomy: anatomy loss; compares warped seg of moving image to seg of target image
# loss_metric: a single supervised seg loss, as a metric to track the progress of training
if 'seg1' in batch.keys() and 'seg2' in batch.keys():
seg1 = monai.networks.one_hot(
batch['seg1'].to(device), num_segmentation_classes)
seg2 = monai.networks.one_hot(
batch['seg2'].to(device), num_segmentation_classes)
loss_metric = dice_loss(seg2_predicted, seg2)
loss_supervised = loss_metric + dice_loss(seg1_predicted, seg1)
# The above supervised loss looks a bit different from the one in the paper
# in that it includes predictions for both images in the current image pair;
# we might as well do this, since we have gone to the trouble of loading
# both segmentations into memory.
elif 'seg1' in batch.keys(): # seg1 available, but no seg2
seg1 = monai.networks.one_hot(
batch['seg1'].to(device), num_segmentation_classes)
loss_metric = dice_loss(seg1_predicted, seg1)
loss_supervised = loss_metric
seg2 = seg2_predicted # Use this in anatomy loss
else: # seg2 available, but no seg1
assert('seg2' in batch.keys())
seg2 = monai.networks.one_hot(
batch['seg2'].to(device), num_segmentation_classes)
loss_metric = dice_loss(seg2_predicted, seg2)
loss_supervised = loss_metric
seg1 = seg1_predicted # Use this in anatomy loss
# seg1 and seg2 should now be in the form of one-hot class probabilities
loss_anatomy = dice_loss(warp_nearest(seg2, displacement_fields), seg1)\
if 'seg1' in batch.keys() or 'seg2' in batch.keys()\
else 0. # It wouldn't really be 0, but it would not contribute to training seg_net
# (If you want to refactor this code for *joint* training of reg_net and seg_net,
# then use the definition of anatomy loss given in the function anatomy_loss above,
# where differentiable warping is used and reg net can be trained with it.)
loss = lambda_a * loss_anatomy + lambda_sp * loss_supervised
loss.backward()
optimizer_seg.step()
losses.append(loss_metric.item())
supervised_loss.append(loss_supervised.item())
anatomy_loss.append(loss_anatomy.item())
training_loss_seg = np.mean(losses)
supervised_loss_seg.append([epoch_number+1, np.mean(supervised_loss)])
anatomy_loss_seg.append([epoch_number+1, np.mean(anatomy_loss)])
logger.info(f"\tseg training loss: {training_loss_seg}")
training_losses_seg.append([epoch_number+1, training_loss_seg])
logger.info("\tsave latest seg_net checkpoint")
save_seg_checkpoint(seg_net, optimizer_seg, epoch_number, training_loss_seg, super_loss=supervised_loss_seg,ana_loss=anatomy_loss_seg, total_loss=training_losses_seg, save_dir=os.path.join(result_seg_path, 'checkpoints'), name='latest')
if len(dataloader_valid_seg) == 0:
logger.info("\tno enough dataset for validation")
save_seg_checkpoint(seg_net, optimizer_seg, epoch_number, training_loss_seg, super_loss=supervised_loss_seg,ana_loss=anatomy_loss_seg, total_loss=training_losses_seg, save_dir=os.path.join(result_seg_path, 'checkpoints'), name='valid')
save_seg_checkpoint(seg_net, optimizer_seg, epoch_number, training_loss_seg, super_loss=supervised_loss_seg,ana_loss=anatomy_loss_seg, total_loss=training_losses_seg, save_dir=os.path.join(result_seg_path, 'checkpoints'), name='best')
if os.path.exists(os.path.join(result_seg_path, 'model', 'seg_net_best.pth')):
if os.path.exists(os.path.join(result_seg_path, 'model', 'seg_net_last_best.pth')):
os.remove(os.path.join(result_seg_path, 'model', 'seg_net_last_best.pth'))
os.rename(os.path.join(result_seg_path, 'model', 'seg_net_best.pth'), os.path.join(result_seg_path, 'model', 'seg_net_last_best.pth'))
torch.save(seg_net.state_dict(), os.path.join(result_seg_path, 'model', 'seg_net_best.pth'))
else:
if epoch_number % val_interval == 0:
# The following validation loop would not do anything in the case
# where there is just one segmentation available,
# because data_seg_available_valid would be empty.
seg_net.eval()
losses = []
with torch.no_grad():
for batch in dataloader_valid_seg:
imgs = batch['img'].to(device)
true_segs = batch['seg'].to(device)
predicted_segs = seg_net(imgs)
loss = dice_loss2(predicted_segs, true_segs)
losses.append(loss.item())
validation_loss_seg = np.mean(losses)
logger.info(f"\tseg validation loss: {validation_loss_seg}")
validation_losses_seg.append([epoch_number+1, validation_loss_seg])
if validation_loss_seg < best_seg_validation_loss:
best_seg_validation_loss = validation_loss_seg
logger.info("\tsave best seg_net checkpoint and model")
save_seg_checkpoint(seg_net, optimizer_seg, epoch_number, best_seg_validation_loss, total_loss=validation_losses_seg, save_dir=os.path.join(result_seg_path, 'checkpoints'), name='best')
if os.path.exists(os.path.join(result_seg_path, 'model', 'seg_net_best.pth')):
if os.path.exists(os.path.join(result_seg_path, 'model', 'seg_net_last_best.pth')):
os.remove(os.path.join(result_seg_path, 'model', 'seg_net_last_best.pth'))
os.rename(os.path.join(result_seg_path, 'model', 'seg_net_best.pth'), os.path.join(result_seg_path, 'model', 'seg_net_last_best.pth'))
torch.save(seg_net.state_dict(), os.path.join(result_seg_path, 'model', 'seg_net_best.pth'))
save_seg_checkpoint(seg_net, optimizer_seg, epoch_number, validation_loss_seg, total_loss=validation_losses_seg, save_dir=os.path.join(result_seg_path, 'checkpoints'), name='valid')
plot_progress(logger, os.path.join(result_seg_path, 'training_plot'), training_losses_seg, validation_losses_seg, 'seg_net_training_loss')
plot_progress(logger, os.path.join(result_seg_path, 'training_plot'), anatomy_loss_seg, [], 'anatomy_seg_net_loss')
plot_progress(logger, os.path.join(result_seg_path, 'training_plot'), supervised_loss_seg, [], 'supervised_seg_net_loss')
logger.info(f"\tseg lr: {optimizer_seg.param_groups[0]['lr']}")
logger.info(f"\treg lr: {optimizer_reg.param_groups[0]['lr']}")
# scheduler_seg.step()
# Free up memory
del (loss, seg1, seg2, displacement_fields, img12, loss_supervised, loss_anatomy, loss_metric,\
seg1_predicted, seg2_predicted)
torch.cuda.empty_cache()
if len(validation_losses_reg) == 0:
logger.info('Only small number of pairs are used for training, no need to do validation. Replace best validation loss with training loss !!!')
logger.info(f'Best reg_net validation loss: {training_loss_reg}')
else:
logger.info(f"Best reg_net validation loss: {best_reg_validation_loss}")
if len(validation_losses_seg) == 0:
logger.info('Only one label is used for training, no need to do validation. Replace best validation loss with training loss !!!')
logger.info(f'Best seg_net validation loss: {training_loss_seg}')
else:
logger.info(f"Best seg_net validation loss: {best_seg_validation_loss}")
# save reg training losses
reg_training_pkl = [{'training_losses': training_losses_reg},
{'anatomy_loss': anatomy_loss_reg},
{'similarity_loss': similarity_loss_reg},
{'regularization_loss': regularization_loss_reg}
]
if len(validation_losses_reg) != 0:
reg_training_pkl.append({'validation_losses': validation_losses_reg})
reg_training_pkl.append({'best_reg_validation_loss': best_reg_validation_loss})
else:
reg_training_pkl.append({'best_reg_validation_loss': training_loss_reg})
# save seg training losses
seg_training_pkl = [{'training_losses': training_losses_seg},
{'anatomy_loss': anatomy_loss_seg},
{'supervised_loss': supervised_loss_seg}
]
if len(validation_losses_seg) != 0:
seg_training_pkl.append({'validation_losses': validation_losses_seg})
seg_training_pkl.append({'best_seg_validation_loss': best_seg_validation_loss})
else:
seg_training_pkl.append({'best_seg_validation_loss': training_loss_seg})
with open(os.path.join(result_reg_path, 'training_plot', 'reg_training_losses.pkl'), 'wb') as f:
pickle.dump(reg_training_pkl, f)
with open(os.path.join(result_seg_path, 'training_plot', 'seg_training_losses.pkl'), 'wb') as ff:
pickle.dump(seg_training_pkl, ff)