|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from multiprocessing import Pool |
|
import SimpleITK as sitk |
|
import numpy as np |
|
from batchgenerators.utilities.file_and_folder_operations import * |
|
from nnunet.paths import nnUNet_raw_data |
|
from nnunet.paths import preprocessing_output_dir |
|
from skimage.io import imread |
|
|
|
|
|
def load_tiff_convert_to_nifti(img_file, lab_file, img_out_base, anno_out, spacing): |
|
img = imread(img_file) |
|
img_itk = sitk.GetImageFromArray(img.astype(np.float32)) |
|
img_itk.SetSpacing(np.array(spacing)[::-1]) |
|
sitk.WriteImage(img_itk, join(img_out_base + "_0000.nii.gz")) |
|
|
|
if lab_file is not None: |
|
l = imread(lab_file) |
|
l[l > 0] = 1 |
|
l_itk = sitk.GetImageFromArray(l.astype(np.uint8)) |
|
l_itk.SetSpacing(np.array(spacing)[::-1]) |
|
sitk.WriteImage(l_itk, anno_out) |
|
|
|
|
|
def prepare_task(base, task_id, task_name, spacing): |
|
p = Pool(16) |
|
|
|
foldername = "Task%03.0d_%s" % (task_id, task_name) |
|
|
|
out_base = join(nnUNet_raw_data, foldername) |
|
imagestr = join(out_base, "imagesTr") |
|
imagests = join(out_base, "imagesTs") |
|
labelstr = join(out_base, "labelsTr") |
|
maybe_mkdir_p(imagestr) |
|
maybe_mkdir_p(imagests) |
|
maybe_mkdir_p(labelstr) |
|
|
|
train_patient_names = [] |
|
test_patient_names = [] |
|
res = [] |
|
|
|
for train_sequence in [i for i in subfolders(base + "_train", join=False) if not i.endswith("_GT")]: |
|
train_cases = subfiles(join(base + '_train', train_sequence), suffix=".tif", join=False) |
|
for t in train_cases: |
|
casename = train_sequence + "_" + t[:-4] |
|
img_file = join(base + '_train', train_sequence, t) |
|
lab_file = join(base + '_train', train_sequence + "_GT", "SEG", "man_seg" + t[1:]) |
|
if not isfile(lab_file): |
|
continue |
|
img_out_base = join(imagestr, casename) |
|
anno_out = join(labelstr, casename + ".nii.gz") |
|
res.append( |
|
p.starmap_async(load_tiff_convert_to_nifti, ((img_file, lab_file, img_out_base, anno_out, spacing),))) |
|
train_patient_names.append(casename) |
|
|
|
for test_sequence in [i for i in subfolders(base + "_test", join=False) if not i.endswith("_GT")]: |
|
test_cases = subfiles(join(base + '_test', test_sequence), suffix=".tif", join=False) |
|
for t in test_cases: |
|
casename = test_sequence + "_" + t[:-4] |
|
img_file = join(base + '_test', test_sequence, t) |
|
lab_file = None |
|
img_out_base = join(imagests, casename) |
|
anno_out = None |
|
res.append( |
|
p.starmap_async(load_tiff_convert_to_nifti, ((img_file, lab_file, img_out_base, anno_out, spacing),))) |
|
test_patient_names.append(casename) |
|
|
|
_ = [i.get() for i in res] |
|
|
|
json_dict = {} |
|
json_dict['name'] = task_name |
|
json_dict['description'] = "" |
|
json_dict['tensorImageSize'] = "4D" |
|
json_dict['reference'] = "" |
|
json_dict['licence'] = "" |
|
json_dict['release'] = "0.0" |
|
json_dict['modality'] = { |
|
"0": "BF", |
|
} |
|
json_dict['labels'] = { |
|
"0": "background", |
|
"1": "cell", |
|
} |
|
|
|
json_dict['numTraining'] = len(train_patient_names) |
|
json_dict['numTest'] = len(test_patient_names) |
|
json_dict['training'] = [{'image': "./imagesTr/%s.nii.gz" % i, "label": "./labelsTr/%s.nii.gz" % i} for i in |
|
train_patient_names] |
|
json_dict['test'] = ["./imagesTs/%s.nii.gz" % i for i in test_patient_names] |
|
|
|
save_json(json_dict, os.path.join(out_base, "dataset.json")) |
|
p.close() |
|
p.join() |
|
|
|
|
|
if __name__ == "__main__": |
|
base = "/media/fabian/My Book/datasets/CellTrackingChallenge/Fluo-C3DH-A549_ManAndSim" |
|
task_id = 75 |
|
task_name = 'Fluo_C3DH_A549_ManAndSim' |
|
spacing = (1, 0.126, 0.126) |
|
prepare_task(base, task_id, task_name, spacing) |
|
|
|
task_name = "Task075_Fluo_C3DH_A549_ManAndSim" |
|
labelsTr = join(nnUNet_raw_data, task_name, "labelsTr") |
|
cases = subfiles(labelsTr, suffix='.nii.gz', join=False) |
|
splits = [] |
|
splits.append( |
|
{'train': [i[:-7] for i in cases if i.startswith('01_') or i.startswith('02_SIM')], |
|
'val': [i[:-7] for i in cases if i.startswith('02_') and not i.startswith('02_SIM')]} |
|
) |
|
splits.append( |
|
{'train': [i[:-7] for i in cases if i.startswith('02_') or i.startswith('01_SIM')], |
|
'val': [i[:-7] for i in cases if i.startswith('01_') and not i.startswith('01_SIM')]} |
|
) |
|
splits.append( |
|
{'train': [i[:-7] for i in cases if i.startswith('01_') or i.startswith('02_') and not i.startswith('02_SIM')], |
|
'val': [i[:-7] for i in cases if i.startswith('02_SIM')]} |
|
) |
|
splits.append( |
|
{'train': [i[:-7] for i in cases if i.startswith('02_') or i.startswith('01_') and not i.startswith('01_SIM')], |
|
'val': [i[:-7] for i in cases if i.startswith('01_SIM')]} |
|
) |
|
save_pickle(splits, join(preprocessing_output_dir, task_name, "splits_final.pkl")) |
|
|
|
|