AutoSeg4ETICA / nnunet /dataset_conversion /Task029_LiverTumorSegmentationChallenge.py
Chris Xiao
upload files
c642393
# Copyright 2020 Division of Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from collections import OrderedDict
import SimpleITK as sitk
from batchgenerators.utilities.file_and_folder_operations import *
from multiprocessing import Pool
import numpy as np
from nnunet.configuration import default_num_threads
from scipy.ndimage import label
def export_segmentations(indir, outdir):
niftis = subfiles(indir, suffix='nii.gz', join=False)
for n in niftis:
identifier = str(n.split("_")[-1][:-7])
outfname = join(outdir, "test-segmentation-%s.nii" % identifier)
img = sitk.ReadImage(join(indir, n))
sitk.WriteImage(img, outfname)
def export_segmentations_postprocess(indir, outdir):
maybe_mkdir_p(outdir)
niftis = subfiles(indir, suffix='nii.gz', join=False)
for n in niftis:
print("\n", n)
identifier = str(n.split("_")[-1][:-7])
outfname = join(outdir, "test-segmentation-%s.nii" % identifier)
img = sitk.ReadImage(join(indir, n))
img_npy = sitk.GetArrayFromImage(img)
lmap, num_objects = label((img_npy > 0).astype(int))
sizes = []
for o in range(1, num_objects + 1):
sizes.append((lmap == o).sum())
mx = np.argmax(sizes) + 1
print(sizes)
img_npy[lmap != mx] = 0
img_new = sitk.GetImageFromArray(img_npy)
img_new.CopyInformation(img)
sitk.WriteImage(img_new, outfname)
if __name__ == "__main__":
train_dir = "/media/fabian/DeepLearningData/tmp/LITS-Challenge-Train-Data"
test_dir = "/media/fabian/My Book/datasets/LiTS/test_data"
output_folder = "/media/fabian/My Book/MedicalDecathlon/MedicalDecathlon_raw_splitted/Task029_LITS"
img_dir = join(output_folder, "imagesTr")
lab_dir = join(output_folder, "labelsTr")
img_dir_te = join(output_folder, "imagesTs")
maybe_mkdir_p(img_dir)
maybe_mkdir_p(lab_dir)
maybe_mkdir_p(img_dir_te)
def load_save_train(args):
data_file, seg_file = args
pat_id = data_file.split("/")[-1]
pat_id = "train_" + pat_id.split("-")[-1][:-4]
img_itk = sitk.ReadImage(data_file)
sitk.WriteImage(img_itk, join(img_dir, pat_id + "_0000.nii.gz"))
img_itk = sitk.ReadImage(seg_file)
sitk.WriteImage(img_itk, join(lab_dir, pat_id + ".nii.gz"))
return pat_id
def load_save_test(args):
data_file = args
pat_id = data_file.split("/")[-1]
pat_id = "test_" + pat_id.split("-")[-1][:-4]
img_itk = sitk.ReadImage(data_file)
sitk.WriteImage(img_itk, join(img_dir_te, pat_id + "_0000.nii.gz"))
return pat_id
nii_files_tr_data = subfiles(train_dir, True, "volume", "nii", True)
nii_files_tr_seg = subfiles(train_dir, True, "segmen", "nii", True)
nii_files_ts = subfiles(test_dir, True, "test-volume", "nii", True)
p = Pool(default_num_threads)
train_ids = p.map(load_save_train, zip(nii_files_tr_data, nii_files_tr_seg))
test_ids = p.map(load_save_test, nii_files_ts)
p.close()
p.join()
json_dict = OrderedDict()
json_dict['name'] = "LITS"
json_dict['description'] = "LITS"
json_dict['tensorImageSize'] = "4D"
json_dict['reference'] = "see challenge website"
json_dict['licence'] = "see challenge website"
json_dict['release'] = "0.0"
json_dict['modality'] = {
"0": "CT"
}
json_dict['labels'] = {
"0": "background",
"1": "liver",
"2": "tumor"
}
json_dict['numTraining'] = len(train_ids)
json_dict['numTest'] = len(test_ids)
json_dict['training'] = [{'image': "./imagesTr/%s.nii.gz" % i, "label": "./labelsTr/%s.nii.gz" % i} for i in train_ids]
json_dict['test'] = ["./imagesTs/%s.nii.gz" % i for i in test_ids]
with open(os.path.join(output_folder, "dataset.json"), 'w') as f:
json.dump(json_dict, f, indent=4, sort_keys=True)