|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from collections import OrderedDict |
|
from nnunet.paths import nnUNet_raw_data |
|
from batchgenerators.utilities.file_and_folder_operations import * |
|
import shutil |
|
|
|
|
|
if __name__ == "__main__": |
|
base = "/media/yunlu/10TB/research/other_data/Multi-Atlas Labeling Beyond the Cranial Vault/RawData/" |
|
|
|
task_id = 17 |
|
task_name = "AbdominalOrganSegmentation" |
|
prefix = 'ABD' |
|
|
|
foldername = "Task%03.0d_%s" % (task_id, task_name) |
|
|
|
out_base = join(nnUNet_raw_data, foldername) |
|
imagestr = join(out_base, "imagesTr") |
|
imagests = join(out_base, "imagesTs") |
|
labelstr = join(out_base, "labelsTr") |
|
maybe_mkdir_p(imagestr) |
|
maybe_mkdir_p(imagests) |
|
maybe_mkdir_p(labelstr) |
|
|
|
train_folder = join(base, "Training/img") |
|
label_folder = join(base, "Training/label") |
|
test_folder = join(base, "Test/img") |
|
train_patient_names = [] |
|
test_patient_names = [] |
|
train_patients = subfiles(train_folder, join=False, suffix = 'nii.gz') |
|
for p in train_patients: |
|
serial_number = int(p[3:7]) |
|
train_patient_name = f'{prefix}_{serial_number:03d}.nii.gz' |
|
label_file = join(label_folder, f'label{p[3:]}') |
|
image_file = join(train_folder, p) |
|
shutil.copy(image_file, join(imagestr, f'{train_patient_name[:7]}_0000.nii.gz')) |
|
shutil.copy(label_file, join(labelstr, train_patient_name)) |
|
train_patient_names.append(train_patient_name) |
|
|
|
test_patients = subfiles(test_folder, join=False, suffix=".nii.gz") |
|
for p in test_patients: |
|
p = p[:-7] |
|
image_file = join(test_folder, p + ".nii.gz") |
|
serial_number = int(p[3:7]) |
|
test_patient_name = f'{prefix}_{serial_number:03d}.nii.gz' |
|
shutil.copy(image_file, join(imagests, f'{test_patient_name[:7]}_0000.nii.gz')) |
|
test_patient_names.append(test_patient_name) |
|
|
|
json_dict = OrderedDict() |
|
json_dict['name'] = "AbdominalOrganSegmentation" |
|
json_dict['description'] = "Multi-Atlas Labeling Beyond the Cranial Vault Abdominal Organ Segmentation" |
|
json_dict['tensorImageSize'] = "3D" |
|
json_dict['reference'] = "https://www.synapse.org/#!Synapse:syn3193805/wiki/217789" |
|
json_dict['licence'] = "see challenge website" |
|
json_dict['release'] = "0.0" |
|
json_dict['modality'] = { |
|
"0": "CT", |
|
} |
|
json_dict['labels'] = OrderedDict({ |
|
"00": "background", |
|
"01": "spleen", |
|
"02": "right kidney", |
|
"03": "left kidney", |
|
"04": "gallbladder", |
|
"05": "esophagus", |
|
"06": "liver", |
|
"07": "stomach", |
|
"08": "aorta", |
|
"09": "inferior vena cava", |
|
"10": "portal vein and splenic vein", |
|
"11": "pancreas", |
|
"12": "right adrenal gland", |
|
"13": "left adrenal gland"} |
|
) |
|
json_dict['numTraining'] = len(train_patient_names) |
|
json_dict['numTest'] = len(test_patient_names) |
|
json_dict['training'] = [{'image': "./imagesTr/%s" % train_patient_name, "label": "./labelsTr/%s" % train_patient_name} for i, train_patient_name in enumerate(train_patient_names)] |
|
json_dict['test'] = ["./imagesTs/%s" % test_patient_name for test_patient_name in test_patient_names] |
|
|
|
save_json(json_dict, os.path.join(out_base, "dataset.json")) |
|
|