Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# What does this model do?
|
2 |
+
This model generates a subject line for the email, given the whole email as input. It is fine-tuned T5-Base
|
3 |
+
|
4 |
+
Here is how to use this model
|
5 |
+
|
6 |
+
```python
|
7 |
+
|
8 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
9 |
+
import torch
|
10 |
+
|
11 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("Chirayu/subject-generator-t5-base")
|
12 |
+
tokenizer = AutoTokenizer.from_pretrained("Chirayu/subject-generator-t5-base")
|
13 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "CPU")
|
14 |
+
model = model.to(device)
|
15 |
+
|
16 |
+
def get_subject(content, num_beams=5,max_length=512, repetition_penalty=2.5, length_penalty=1, early_stopping=True,top_p=.95, top_k=50, num_return_sequences=3):
|
17 |
+
|
18 |
+
text = "title: " + content + " </s>"
|
19 |
+
|
20 |
+
input_ids = tokenizer.encode(
|
21 |
+
text, return_tensors="pt", add_special_tokens=True
|
22 |
+
)
|
23 |
+
|
24 |
+
input_ids = input_ids.to(device)
|
25 |
+
generated_ids = model.generate(
|
26 |
+
input_ids=input_ids,
|
27 |
+
|
28 |
+
num_beams=num_beams,
|
29 |
+
max_length=max_length,
|
30 |
+
repetition_penalty=repetition_penalty,
|
31 |
+
length_penalty=length_penalty,
|
32 |
+
early_stopping=early_stopping,
|
33 |
+
top_p=top_p,
|
34 |
+
top_k=top_k,
|
35 |
+
num_return_sequences=num_return_sequences,
|
36 |
+
)
|
37 |
+
subjects = [tokenizer.decode(generated_id,skip_special_tokens=True,clean_up_tokenization_spaces=True,) for generated_id in generated_ids]
|
38 |
+
return subjects
|
39 |
+
```
|
40 |
+
|
41 |
+
|