Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This model predicts the sentiment('Negative'/'Positive') for the input sentence. It is fine-tuned mt5-small
|
2 |
+
|
3 |
+
The present model supports 6 languages -
|
4 |
+
1) English
|
5 |
+
2) Hindi
|
6 |
+
3) German
|
7 |
+
4) Korean
|
8 |
+
5) Japanese
|
9 |
+
6) Portuguese
|
10 |
+
|
11 |
+
Here is how to use this model
|
12 |
+
|
13 |
+
```python
|
14 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
15 |
+
import torch
|
16 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("Chirayu/mt5-multilingual-sentiment")
|
17 |
+
tokenizer = AutoTokenizer.from_pretrained("Chirayu/mt5-multilingual-sentiment")
|
18 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
19 |
+
model = model.to(device)
|
20 |
+
|
21 |
+
def get_subject(text, num_beams=2,max_length=512, repetition_penalty=2.5, length_penalty=1, early_stopping=True,top_p=.95, top_k=50, num_return_sequences=1):
|
22 |
+
|
23 |
+
input_ids = tokenizer.encode(
|
24 |
+
text, return_tensors="pt", add_special_tokens=True
|
25 |
+
)
|
26 |
+
|
27 |
+
input_ids = input_ids.to(device)
|
28 |
+
generated_ids = model.generate(
|
29 |
+
input_ids=input_ids,
|
30 |
+
|
31 |
+
num_beams=num_beams,
|
32 |
+
max_length=max_length,
|
33 |
+
repetition_penalty=repetition_penalty,
|
34 |
+
length_penalty=length_penalty,
|
35 |
+
early_stopping=early_stopping,
|
36 |
+
top_p=top_p,
|
37 |
+
top_k=top_k,
|
38 |
+
num_return_sequences=num_return_sequences,
|
39 |
+
)
|
40 |
+
sentiment = [tokenizer.decode(generated_id,skip_special_tokens=True,clean_up_tokenization_spaces=True,) for generated_id in generated_ids]
|
41 |
+
return sentiment
|
42 |
+
```
|