Chikashi commited on
Commit
7c52ad3
·
1 Parent(s): 1560a87

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +87 -0
README.md ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - wikihow
7
+ metrics:
8
+ - rouge
9
+ model-index:
10
+ - name: t5-small-finetuned-wikihow_3epoch_b8_lr3e-5
11
+ results:
12
+ - task:
13
+ name: Sequence-to-sequence Language Modeling
14
+ type: text2text-generation
15
+ dataset:
16
+ name: wikihow
17
+ type: wikihow
18
+ args: all
19
+ metrics:
20
+ - name: Rouge1
21
+ type: rouge
22
+ value: 25.9411
23
+ ---
24
+
25
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
26
+ should probably proofread and complete it, then remove this comment. -->
27
+
28
+ # t5-small-finetuned-wikihow_3epoch_b8_lr3e-5
29
+
30
+ This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the wikihow dataset.
31
+ It achieves the following results on the evaluation set:
32
+ - Loss: 2.4836
33
+ - Rouge1: 25.9411
34
+ - Rouge2: 9.226
35
+ - Rougel: 21.9087
36
+ - Rougelsum: 25.2863
37
+ - Gen Len: 18.4076
38
+
39
+ ## Model description
40
+
41
+ More information needed
42
+
43
+ ## Intended uses & limitations
44
+
45
+ More information needed
46
+
47
+ ## Training and evaluation data
48
+
49
+ More information needed
50
+
51
+ ## Training procedure
52
+
53
+ ### Training hyperparameters
54
+
55
+ The following hyperparameters were used during training:
56
+ - learning_rate: 3e-05
57
+ - train_batch_size: 8
58
+ - eval_batch_size: 8
59
+ - seed: 42
60
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
61
+ - lr_scheduler_type: linear
62
+ - num_epochs: 3
63
+ - mixed_precision_training: Native AMP
64
+
65
+ ### Training results
66
+
67
+ | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
68
+ |:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:|
69
+ | 2.912 | 0.25 | 5000 | 2.6285 | 23.6659 | 7.8535 | 19.9837 | 22.9884 | 18.3867 |
70
+ | 2.8115 | 0.51 | 10000 | 2.5820 | 24.7979 | 8.4888 | 20.8719 | 24.1321 | 18.3292 |
71
+ | 2.767 | 0.76 | 15000 | 2.5555 | 25.0857 | 8.6437 | 21.149 | 24.4256 | 18.2981 |
72
+ | 2.742 | 1.02 | 20000 | 2.5330 | 25.3431 | 8.8393 | 21.425 | 24.7032 | 18.3749 |
73
+ | 2.7092 | 1.27 | 25000 | 2.5203 | 25.5338 | 8.9281 | 21.5378 | 24.9045 | 18.3399 |
74
+ | 2.6989 | 1.53 | 30000 | 2.5065 | 25.4792 | 8.9745 | 21.4941 | 24.8458 | 18.4565 |
75
+ | 2.6894 | 1.78 | 35000 | 2.5018 | 25.6815 | 9.1218 | 21.6958 | 25.0557 | 18.406 |
76
+ | 2.6897 | 2.03 | 40000 | 2.4944 | 25.8241 | 9.2127 | 21.8205 | 25.1801 | 18.4228 |
77
+ | 2.6664 | 2.29 | 45000 | 2.4891 | 25.8241 | 9.1662 | 21.7807 | 25.1615 | 18.4258 |
78
+ | 2.6677 | 2.54 | 50000 | 2.4855 | 25.7435 | 9.145 | 21.765 | 25.0858 | 18.4329 |
79
+ | 2.6631 | 2.8 | 55000 | 2.4836 | 25.9411 | 9.226 | 21.9087 | 25.2863 | 18.4076 |
80
+
81
+
82
+ ### Framework versions
83
+
84
+ - Transformers 4.18.0
85
+ - Pytorch 1.10.0+cu111
86
+ - Datasets 2.0.0
87
+ - Tokenizers 0.11.6