Chikashi commited on
Commit
cbd7052
1 Parent(s): 51d2061

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +99 -0
README.md ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - wikihow
7
+ metrics:
8
+ - rouge
9
+ model-index:
10
+ - name: t5-small-finetuned-wikihow_3epoch_b4_lr3e-4
11
+ results:
12
+ - task:
13
+ name: Sequence-to-sequence Language Modeling
14
+ type: text2text-generation
15
+ dataset:
16
+ name: wikihow
17
+ type: wikihow
18
+ args: all
19
+ metrics:
20
+ - name: Rouge1
21
+ type: rouge
22
+ value: 27.4024
23
+ ---
24
+
25
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
26
+ should probably proofread and complete it, then remove this comment. -->
27
+
28
+ # t5-small-finetuned-wikihow_3epoch_b4_lr3e-4
29
+
30
+ This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the wikihow dataset.
31
+ It achieves the following results on the evaluation set:
32
+ - Loss: 2.2757
33
+ - Rouge1: 27.4024
34
+ - Rouge2: 10.7065
35
+ - Rougel: 23.3153
36
+ - Rougelsum: 26.7336
37
+ - Gen Len: 18.5506
38
+
39
+ ## Model description
40
+
41
+ More information needed
42
+
43
+ ## Intended uses & limitations
44
+
45
+ More information needed
46
+
47
+ ## Training and evaluation data
48
+
49
+ More information needed
50
+
51
+ ## Training procedure
52
+
53
+ ### Training hyperparameters
54
+
55
+ The following hyperparameters were used during training:
56
+ - learning_rate: 0.0003
57
+ - train_batch_size: 4
58
+ - eval_batch_size: 4
59
+ - seed: 42
60
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
61
+ - lr_scheduler_type: linear
62
+ - num_epochs: 3
63
+ - mixed_precision_training: Native AMP
64
+
65
+ ### Training results
66
+
67
+ | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
68
+ |:-------------:|:-----:|:------:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
69
+ | 2.8424 | 0.13 | 5000 | 2.5695 | 25.2232 | 8.7617 | 21.2019 | 24.4949 | 18.4151 |
70
+ | 2.7334 | 0.25 | 10000 | 2.5229 | 25.3739 | 9.0477 | 21.5054 | 24.7553 | 18.3802 |
71
+ | 2.6823 | 0.38 | 15000 | 2.4857 | 26.341 | 9.6711 | 22.3446 | 25.7256 | 18.449 |
72
+ | 2.6607 | 0.51 | 20000 | 2.4540 | 26.0269 | 9.4722 | 22.0822 | 25.3602 | 18.4704 |
73
+ | 2.6137 | 0.64 | 25000 | 2.4326 | 26.2966 | 9.6815 | 22.4422 | 25.6326 | 18.3517 |
74
+ | 2.6077 | 0.76 | 30000 | 2.4108 | 26.0981 | 9.6221 | 22.1189 | 25.454 | 18.5079 |
75
+ | 2.5847 | 0.89 | 35000 | 2.3879 | 26.2675 | 9.6435 | 22.3738 | 25.6122 | 18.4838 |
76
+ | 2.5558 | 1.02 | 40000 | 2.3827 | 26.3458 | 9.7844 | 22.4718 | 25.7388 | 18.5097 |
77
+ | 2.4902 | 1.14 | 45000 | 2.3725 | 26.4987 | 9.9634 | 22.5398 | 25.8399 | 18.5912 |
78
+ | 2.4785 | 1.27 | 50000 | 2.3549 | 26.884 | 10.1136 | 22.8212 | 26.2262 | 18.4763 |
79
+ | 2.4822 | 1.4 | 55000 | 2.3467 | 26.8635 | 10.2266 | 22.9161 | 26.2252 | 18.5847 |
80
+ | 2.46 | 1.53 | 60000 | 2.3393 | 26.8602 | 10.1785 | 22.8453 | 26.1917 | 18.548 |
81
+ | 2.4523 | 1.65 | 65000 | 2.3330 | 26.91 | 10.237 | 22.9309 | 26.2372 | 18.5154 |
82
+ | 2.4525 | 1.78 | 70000 | 2.3203 | 27.073 | 10.4317 | 23.1355 | 26.4528 | 18.5063 |
83
+ | 2.4566 | 1.91 | 75000 | 2.3109 | 27.3853 | 10.5413 | 23.3455 | 26.7408 | 18.5258 |
84
+ | 2.4234 | 2.03 | 80000 | 2.3103 | 27.0836 | 10.4857 | 23.0538 | 26.409 | 18.5326 |
85
+ | 2.3686 | 2.16 | 85000 | 2.2986 | 27.311 | 10.6038 | 23.3068 | 26.6636 | 18.4874 |
86
+ | 2.3758 | 2.29 | 90000 | 2.2969 | 27.3509 | 10.6502 | 23.2764 | 26.6832 | 18.5438 |
87
+ | 2.3777 | 2.42 | 95000 | 2.2907 | 27.39 | 10.5842 | 23.3601 | 26.7433 | 18.5444 |
88
+ | 2.3624 | 2.54 | 100000 | 2.2875 | 27.3717 | 10.6098 | 23.3326 | 26.7232 | 18.5521 |
89
+ | 2.3543 | 2.67 | 105000 | 2.2811 | 27.4188 | 10.6919 | 23.3022 | 26.7426 | 18.564 |
90
+ | 2.366 | 2.8 | 110000 | 2.2763 | 27.4872 | 10.7079 | 23.4135 | 26.829 | 18.5399 |
91
+ | 2.3565 | 2.93 | 115000 | 2.2757 | 27.4024 | 10.7065 | 23.3153 | 26.7336 | 18.5506 |
92
+
93
+
94
+ ### Framework versions
95
+
96
+ - Transformers 4.18.0
97
+ - Pytorch 1.10.0+cu111
98
+ - Datasets 2.0.0
99
+ - Tokenizers 0.11.6