update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- wikihow
|
7 |
+
metrics:
|
8 |
+
- rouge
|
9 |
+
model-index:
|
10 |
+
- name: t5-small-finetuned-wikihow_3epoch_b4_lr3e-4
|
11 |
+
results:
|
12 |
+
- task:
|
13 |
+
name: Sequence-to-sequence Language Modeling
|
14 |
+
type: text2text-generation
|
15 |
+
dataset:
|
16 |
+
name: wikihow
|
17 |
+
type: wikihow
|
18 |
+
args: all
|
19 |
+
metrics:
|
20 |
+
- name: Rouge1
|
21 |
+
type: rouge
|
22 |
+
value: 27.4024
|
23 |
+
---
|
24 |
+
|
25 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
26 |
+
should probably proofread and complete it, then remove this comment. -->
|
27 |
+
|
28 |
+
# t5-small-finetuned-wikihow_3epoch_b4_lr3e-4
|
29 |
+
|
30 |
+
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the wikihow dataset.
|
31 |
+
It achieves the following results on the evaluation set:
|
32 |
+
- Loss: 2.2757
|
33 |
+
- Rouge1: 27.4024
|
34 |
+
- Rouge2: 10.7065
|
35 |
+
- Rougel: 23.3153
|
36 |
+
- Rougelsum: 26.7336
|
37 |
+
- Gen Len: 18.5506
|
38 |
+
|
39 |
+
## Model description
|
40 |
+
|
41 |
+
More information needed
|
42 |
+
|
43 |
+
## Intended uses & limitations
|
44 |
+
|
45 |
+
More information needed
|
46 |
+
|
47 |
+
## Training and evaluation data
|
48 |
+
|
49 |
+
More information needed
|
50 |
+
|
51 |
+
## Training procedure
|
52 |
+
|
53 |
+
### Training hyperparameters
|
54 |
+
|
55 |
+
The following hyperparameters were used during training:
|
56 |
+
- learning_rate: 0.0003
|
57 |
+
- train_batch_size: 4
|
58 |
+
- eval_batch_size: 4
|
59 |
+
- seed: 42
|
60 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
61 |
+
- lr_scheduler_type: linear
|
62 |
+
- num_epochs: 3
|
63 |
+
- mixed_precision_training: Native AMP
|
64 |
+
|
65 |
+
### Training results
|
66 |
+
|
67 |
+
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|
68 |
+
|:-------------:|:-----:|:------:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
|
69 |
+
| 2.8424 | 0.13 | 5000 | 2.5695 | 25.2232 | 8.7617 | 21.2019 | 24.4949 | 18.4151 |
|
70 |
+
| 2.7334 | 0.25 | 10000 | 2.5229 | 25.3739 | 9.0477 | 21.5054 | 24.7553 | 18.3802 |
|
71 |
+
| 2.6823 | 0.38 | 15000 | 2.4857 | 26.341 | 9.6711 | 22.3446 | 25.7256 | 18.449 |
|
72 |
+
| 2.6607 | 0.51 | 20000 | 2.4540 | 26.0269 | 9.4722 | 22.0822 | 25.3602 | 18.4704 |
|
73 |
+
| 2.6137 | 0.64 | 25000 | 2.4326 | 26.2966 | 9.6815 | 22.4422 | 25.6326 | 18.3517 |
|
74 |
+
| 2.6077 | 0.76 | 30000 | 2.4108 | 26.0981 | 9.6221 | 22.1189 | 25.454 | 18.5079 |
|
75 |
+
| 2.5847 | 0.89 | 35000 | 2.3879 | 26.2675 | 9.6435 | 22.3738 | 25.6122 | 18.4838 |
|
76 |
+
| 2.5558 | 1.02 | 40000 | 2.3827 | 26.3458 | 9.7844 | 22.4718 | 25.7388 | 18.5097 |
|
77 |
+
| 2.4902 | 1.14 | 45000 | 2.3725 | 26.4987 | 9.9634 | 22.5398 | 25.8399 | 18.5912 |
|
78 |
+
| 2.4785 | 1.27 | 50000 | 2.3549 | 26.884 | 10.1136 | 22.8212 | 26.2262 | 18.4763 |
|
79 |
+
| 2.4822 | 1.4 | 55000 | 2.3467 | 26.8635 | 10.2266 | 22.9161 | 26.2252 | 18.5847 |
|
80 |
+
| 2.46 | 1.53 | 60000 | 2.3393 | 26.8602 | 10.1785 | 22.8453 | 26.1917 | 18.548 |
|
81 |
+
| 2.4523 | 1.65 | 65000 | 2.3330 | 26.91 | 10.237 | 22.9309 | 26.2372 | 18.5154 |
|
82 |
+
| 2.4525 | 1.78 | 70000 | 2.3203 | 27.073 | 10.4317 | 23.1355 | 26.4528 | 18.5063 |
|
83 |
+
| 2.4566 | 1.91 | 75000 | 2.3109 | 27.3853 | 10.5413 | 23.3455 | 26.7408 | 18.5258 |
|
84 |
+
| 2.4234 | 2.03 | 80000 | 2.3103 | 27.0836 | 10.4857 | 23.0538 | 26.409 | 18.5326 |
|
85 |
+
| 2.3686 | 2.16 | 85000 | 2.2986 | 27.311 | 10.6038 | 23.3068 | 26.6636 | 18.4874 |
|
86 |
+
| 2.3758 | 2.29 | 90000 | 2.2969 | 27.3509 | 10.6502 | 23.2764 | 26.6832 | 18.5438 |
|
87 |
+
| 2.3777 | 2.42 | 95000 | 2.2907 | 27.39 | 10.5842 | 23.3601 | 26.7433 | 18.5444 |
|
88 |
+
| 2.3624 | 2.54 | 100000 | 2.2875 | 27.3717 | 10.6098 | 23.3326 | 26.7232 | 18.5521 |
|
89 |
+
| 2.3543 | 2.67 | 105000 | 2.2811 | 27.4188 | 10.6919 | 23.3022 | 26.7426 | 18.564 |
|
90 |
+
| 2.366 | 2.8 | 110000 | 2.2763 | 27.4872 | 10.7079 | 23.4135 | 26.829 | 18.5399 |
|
91 |
+
| 2.3565 | 2.93 | 115000 | 2.2757 | 27.4024 | 10.7065 | 23.3153 | 26.7336 | 18.5506 |
|
92 |
+
|
93 |
+
|
94 |
+
### Framework versions
|
95 |
+
|
96 |
+
- Transformers 4.18.0
|
97 |
+
- Pytorch 1.10.0+cu111
|
98 |
+
- Datasets 2.0.0
|
99 |
+
- Tokenizers 0.11.6
|