Chikashi commited on
Commit
5c605c0
·
1 Parent(s): 9701823

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +77 -0
README.md ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - cnn_dailymail
7
+ metrics:
8
+ - rouge
9
+ model-index:
10
+ - name: t5-small-finetuned-cnndm3-wikihow2
11
+ results:
12
+ - task:
13
+ name: Sequence-to-sequence Language Modeling
14
+ type: text2text-generation
15
+ dataset:
16
+ name: cnn_dailymail
17
+ type: cnn_dailymail
18
+ args: 3.0.0
19
+ metrics:
20
+ - name: Rouge1
21
+ type: rouge
22
+ value: 24.6704
23
+ ---
24
+
25
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
26
+ should probably proofread and complete it, then remove this comment. -->
27
+
28
+ # t5-small-finetuned-cnndm3-wikihow2
29
+
30
+ This model is a fine-tuned version of [Chikashi/t5-small-finetuned-cnndm2-wikihow2](https://huggingface.co/Chikashi/t5-small-finetuned-cnndm2-wikihow2) on the cnn_dailymail dataset.
31
+ It achieves the following results on the evaluation set:
32
+ - Loss: 1.6265
33
+ - Rouge1: 24.6704
34
+ - Rouge2: 11.9038
35
+ - Rougel: 20.3622
36
+ - Rougelsum: 23.2612
37
+ - Gen Len: 18.9997
38
+
39
+ ## Model description
40
+
41
+ More information needed
42
+
43
+ ## Intended uses & limitations
44
+
45
+ More information needed
46
+
47
+ ## Training and evaluation data
48
+
49
+ More information needed
50
+
51
+ ## Training procedure
52
+
53
+ ### Training hyperparameters
54
+
55
+ The following hyperparameters were used during training:
56
+ - learning_rate: 0.0003
57
+ - train_batch_size: 4
58
+ - eval_batch_size: 4
59
+ - seed: 42
60
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
61
+ - lr_scheduler_type: linear
62
+ - num_epochs: 1
63
+ - mixed_precision_training: Native AMP
64
+
65
+ ### Training results
66
+
67
+ | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
68
+ |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
69
+ | 1.8071 | 1.0 | 71779 | 1.6265 | 24.6704 | 11.9038 | 20.3622 | 23.2612 | 18.9997 |
70
+
71
+
72
+ ### Framework versions
73
+
74
+ - Transformers 4.18.0
75
+ - Pytorch 1.10.0+cu111
76
+ - Datasets 2.1.0
77
+ - Tokenizers 0.12.1