SAT-HMR / models /dn_components.py
ChiSu001's picture
Upload model files
ff07ed4 verified
# Modified from DINO (https://github.com/IDEA-Research/DINO)
import torch
from utils.misc import (NestedTensor, nested_tensor_from_tensor_list,
accuracy, get_world_size, interpolate,
is_dist_avail_and_initialized, inverse_sigmoid)
from utils import box_ops
import torch.nn.functional as F
def prepare_for_cdn(targets, dn_cfg, num_queries, hidden_dim, dn_enc):
"""
A major difference of DINO from DN-DETR is that the author process pattern embedding pattern embedding in its detector
forward function and use learnable tgt embedding, so we change this function a little bit.
:param dn_args: targets, dn_number, label_noise_ratio, box_noise_scale
:param training: if it is training or inference
:param num_queries: number of queires
:param num_classes: number of classes
:param hidden_dim: transformer hidden dim
:param label_enc: encode labels in dn
:return:
"""
device = targets[0]['boxes'].device
dn_number = dn_cfg['dn_number']
box_noise_scale = dn_cfg['box_noise_scale']
tgt_noise_scale = dn_cfg['tgt_noise_scale']
known = [(torch.ones_like(t['labels'])) for t in targets]
batch_size = len(known)
known_num = [sum(k) for k in known]
if int(max(known_num)) == 0:
dn_number = 1
else:
if dn_number >= 100:
dn_number = dn_number // (int(max(known_num) * 2))
elif dn_number < 1:
dn_number = 1
if dn_number == 0:
dn_number = 1
unmask_bbox = torch.cat(known)
boxes = torch.cat([t['boxes'] for t in targets])
assert boxes.ndim == 2
batch_idx = torch.cat([torch.full_like(t['labels'].long(), i) for i, t in enumerate(targets)])
known_indice = torch.nonzero(unmask_bbox)
known_indice = known_indice.view(-1)
known_indice = known_indice.repeat(2 * dn_number, 1).view(-1)
known_bid = batch_idx.repeat(2 * dn_number, 1).view(-1)
single_pad = int(max(known_num))
pad_size = int(single_pad * 2 * dn_number)
positive_idx = torch.tensor(range(len(boxes))).long().to(device=device).unsqueeze(0).repeat(dn_number, 1)
positive_idx += (torch.tensor(range(dn_number)) * len(boxes) * 2).long().to(device=device).unsqueeze(1)
positive_idx = positive_idx.flatten()
negative_idx = positive_idx + len(boxes)
# box queries
known_bboxs = boxes.repeat(2 * dn_number, 1)
known_bbox_expand = known_bboxs.clone()
if box_noise_scale > 0:
known_bbox_ = torch.zeros_like(known_bboxs)
known_bbox_[:, :2] = known_bboxs[:, :2] - known_bboxs[:, 2:] / 2
known_bbox_[:, 2:] = known_bboxs[:, :2] + known_bboxs[:, 2:] / 2
diff = torch.zeros_like(known_bboxs)
diff[:, :2] = known_bboxs[:, 2:] / 2
diff[:, 2:] = known_bboxs[:, 2:] / 2
rand_sign = torch.randint_like(known_bboxs, low=0, high=2, dtype=torch.float32) * 2.0 - 1.0
rand_part = torch.rand_like(known_bboxs)
rand_part[negative_idx] += 1.0
rand_part *= rand_sign
known_bbox_ = known_bbox_ + torch.mul(rand_part,
diff).to(device=device) * box_noise_scale
known_bbox_ = known_bbox_.clamp(min=0.0, max=1.0)
known_bbox_expand[:, :2] = (known_bbox_[:, :2] + known_bbox_[:, 2:]) / 2
known_bbox_expand[:, 2:] = known_bbox_[:, 2:] - known_bbox_[:, :2]
input_bbox_embed = inverse_sigmoid(known_bbox_expand)
# tgt queries
if dn_cfg['tgt_embed_type'] == 'labels':
labels = torch.cat([t['labels'] for t in targets])
known_labels = labels.repeat(2 * dn_number, 1).view(-1)
known_labels_expaned = known_labels.clone()
if tgt_noise_scale > 0:
p = torch.rand_like(known_labels_expaned.float())
chosen_indice = torch.nonzero(p < tgt_noise_scale).view(-1)
new_label = torch.randint_like(chosen_indice, 0, dn_cfg['dn_labelbook_size']) # randomly put a new one here
known_labels_expaned.scatter_(0, chosen_indice, new_label)
m = known_labels_expaned.long().to(device=device)
input_tgt_embed = dn_enc(m)
elif dn_cfg['tgt_embed_type'] == 'params':
poses = torch.cat([t['poses'] for t in targets])
betas = torch.cat([t['betas'] for t in targets])
params = torch.cat([poses, betas], dim=-1)
assert params.ndim == 2
known_params = params.repeat(2 * dn_number, 1)
known_params_expaned = known_params.clone()
if tgt_noise_scale > 0:
rand_sign = torch.randint_like(known_params, low=0, high=2, dtype=torch.float32) * 2.0 - 1.0
rand_part = torch.rand_like(known_params)
rand_part[negative_idx] += 1.0
rand_part *= rand_sign
known_params_expaned = known_params_expaned + rand_part * tgt_noise_scale
m = known_params_expaned.to(device=device)
input_tgt_embed = dn_enc(m)
padding_tgt = torch.zeros((pad_size, hidden_dim), device=device)
padding_bbox = torch.zeros((pad_size, 4), device=device)
input_query_tgt = padding_tgt.repeat(batch_size, 1, 1)
input_query_bbox = padding_bbox.repeat(batch_size, 1, 1)
map_known_indice = torch.tensor([]).to(device=device)
if len(known_num):
map_known_indice = torch.cat([torch.tensor(range(num)) for num in known_num]) # [1,2, 1,2,3]
map_known_indice = torch.cat([map_known_indice + single_pad * i for i in range(2 * dn_number)]).long()
if len(known_bid):
input_query_tgt[(known_bid.long(), map_known_indice)] = input_tgt_embed
input_query_bbox[(known_bid.long(), map_known_indice)] = input_bbox_embed
# prepare attn_mask
tgt_size = pad_size + num_queries
attn_mask = torch.zeros((tgt_size, tgt_size), dtype=bool, device=device)
# match query cannot see the reconstruct
attn_mask[pad_size:, :pad_size] = True
# reconstruct cannot see each other
for i in range(dn_number):
if i == 0:
attn_mask[single_pad * 2 * i:single_pad * 2 * (i + 1), single_pad * 2 * (i + 1):pad_size] = True
if i == dn_number - 1:
attn_mask[single_pad * 2 * i:single_pad * 2 * (i + 1), :single_pad * i * 2] = True
else:
attn_mask[single_pad * 2 * i:single_pad * 2 * (i + 1), single_pad * 2 * (i + 1):pad_size] = True
attn_mask[single_pad * 2 * i:single_pad * 2 * (i + 1), :single_pad * 2 * i] = True
dn_meta = {
'pad_size': pad_size,
'num_dn_group': dn_number,
}
return input_query_tgt, input_query_bbox, attn_mask, dn_meta
def dn_post_process(pred_poses, pred_betas,
pred_boxes, pred_confs,
pred_j3ds, pred_j2ds, pred_depths,
pred_verts, pred_transl,
dn_meta, aux_loss, _set_aux_loss):
"""
post process of dn after output from the transformer
put the dn part in the dn_meta
"""
assert dn_meta['pad_size'] > 0
pad_size = dn_meta['pad_size']
known_poses, pred_poses = pred_poses[:,:,:pad_size], pred_poses[:,:,pad_size:]
known_betas, pred_betas = pred_betas[:,:,:pad_size], pred_betas[:,:,pad_size:]
known_boxes, pred_boxes = pred_boxes[:,:,:pad_size], pred_boxes[:,:,pad_size:]
known_confs, pred_confs = pred_confs[:,:,:pad_size], pred_confs[:,:,pad_size:]
known_j3ds, pred_j3ds = pred_j3ds[:,:,:pad_size], pred_j3ds[:,:,pad_size:]
known_j2ds, pred_j2ds = pred_j2ds[:,:,:pad_size], pred_j2ds[:,:,pad_size:]
known_depths, pred_depths = pred_depths[:,:,:pad_size], pred_depths[:,:,pad_size:]
known_verts, pred_verts = pred_verts[:,:pad_size], pred_verts[:,pad_size:]
known_transl, pred_transl = pred_transl[:,:pad_size], pred_transl[:,pad_size:]
out = {'pred_poses': known_poses[-1], 'pred_betas': known_betas[-1],
'pred_boxes': known_boxes[-1], 'pred_confs': known_confs[-1],
'pred_j3ds': known_j3ds[-1], 'pred_j2ds': known_j2ds[-1],
'pred_depths': known_depths[-1]}
if aux_loss:
out['aux_outputs'] = _set_aux_loss(known_poses, known_betas,
known_boxes, known_confs,
known_j3ds, known_j2ds, known_depths)
dn_meta['output_known'] = out
return pred_poses, pred_betas,\
pred_boxes, pred_confs,\
pred_j3ds, pred_j2ds,\
pred_depths, pred_verts,\
pred_transl,